NASA Contractor Report 181678

Advanced Information Processing System:
Input/Output Network Mangement Software

Gail Nagle
Linda Alger
Alexander Kemp

THE CHARLES STARK DRAPER LABORATORY, INC.

CAMBRIDGE, MA 02139

Contract NAS1-17666
MAY 1988

INFCEEBATION
s4SA-CB-1681678) ADVANCED {lt :
éiGCESSIBG SYSTEN: INECT/CUTELT iETkoagtark)
EANAGEMENT SOFTK2BE {Craper (CharlezSCL ok
Lak.) 288

NASAN

National Aeronautics and
Space Admunistration

Langley Research Center
Hampton, Virginia 23665-5225

N88-29421

Unclas
G3/62 0154255

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS.....coooiiiiiiiiiiitreeeseiieeeeeeeseeeeesessesesasassssssnns v
1. INTRODUCTIONituiiiiiiuitiieuniniiiiieeineeterneesinemneenneenesnaeeneseniennssnnens 1
1.1 AIPS Archifectireooiuuiumiiiiiiietieiieeie e e eee et e eeneennennans 1
11,1 AIPS NEWOTKS ccvuvutiiiiiiiiniiiiieeieieeneenenneneenenernenereenesensecensnnens 4
1.2 ATPS System SOfEWATEccuuiiuiiierrneruerinerrneeneeneeeeernesesseensenesnnees 5
1.2.1 AIPS Software Desigh......cuiuiiiiiniuiiiiniiiiiiniierieeieieeeeeeneneeenaanss 5
~ 1.2.2 AIPS System Software OVEIVIEWceuevueeienieiinineinienieeneeaeannns 5
1.2.2.1 Local System SerVICeS.....iuvuurnieirerneireniinineriearienrneenenenes 7
1.2.2.2 INterCOMPULET SEIVICES ... evuruernrrnrnerruerernrnnenenernenrensnnenne 9
1.2.2.3 System Manager......ccceuveieniuieieniiiiiieneeenrineneneensernsnns 10
1.2.2.4 I/O System Services..........ccoeumiummemnniinieinneiieennieceeeeene 11
2. IO NETWORK MANAGEMENT FUNCTIONAL REQUIREMENTS 15
2.1 INErOQUCLIONoeuuiniiininrireriieriie ittt een et eeeeneeneenesnesnrenssansnesneses 15
| 2.2 YO Network Manager Interface to AIPS System Services......................... 17
| 2.3 1/O Network Manager Interface to Subprocesses in /O System Services........ 20
2.3.1 JOSequencer UHHHESeuvvuueenniisiineiineiieee et eeeeeeeeeaeeresnnennns 20
2.3.2 J/O Databases. .. ccuueieureneeeuiiiineneeineetieesteenerneeneenneeeseenaenneanes 21
2.3.3 J/O Network Statuscuuuieeriiiiuniirrnneerineeiiieeieneeeeeneeeenneeennns 22
2.3.4 VO NEtWOrk LOZS «.cuuuenivrniiieiininninieeneeneenerennennss e 23
2.3.5 /O Network Stattus MOMItOT.evvueruniineeineenneenneeneeenneeanneennnns 23
2.4 Algorithmic Considerationsc.oeeuvuneeenrenseneeseeenesnesnninnes 23
| 2.4.1 Network GIOWHH.....cvuuiuuueriieeeineiiei et e e eeeeaeeeeeanaeeneennss 23
2.4.2 Fault ANalySiS....cuiuuereneeeuieeeerneeneinteeeeeeeneeeeenseenasnnsenasnnaes 31
2.4.3 ReCONIGUIAtON ...euuvvurunruniereennetieeaeeneenenneeneenaeeeasrneennsnnes 35
3. YO NETWORK MANAGEMENT SOFTWARE SPECIFICATIONS................. 41
3.1 VO Network MAnager.................uuvveieienneeeneneeeeneseneessseeeeseeesennsoes 41
3.1.1 NetWork GIOWth.....ccvuuireniiiiiei et eii e eeeeeereeeseeeseee s e 43
3.1.1.1 Establish ROOt Linkcuivuiiuniinniiie e eeeeeneeennennns 46
3.1.1.2 Adding Nodes to Networkcovueemeenneuerennenneannnnnnn,s 49
3.1.1.3 Diagnostic TeStNg.......ccuuraruerrurerunrerneeineeenneenarennrain.. 51
3.1.1.4 Connecting Spare ROOt Links............c.cvuuvennenneenennnnnnnnn., 53
3.1.1.5 Adding DIUS......c.ituiitniinieineriiiiiieiie e e eeeee e onns 54
3.1.1.6 Adding Remote GPCSuuiunininineiineneeneeeeneneenannenin,s 55
3.1.2 Network Maintenanceoeeveeeernneeenneeenneeneeeenneeesonessenesennns 56
3.1.2.1 Network Status ColleCHON.cvvuneeenneeenneeernnerennerenns.. 56
3.1.2.2 Network Fault Analysis........ueeueeeeeeeenenrrneneesneneeenanninnns 58
3.1.2.3 Network RecOnfiguration..........c.cuueeueneerernneeenseennennnnnn. 62
3.1.2.4 Spare Link CYCHNg. ..cccvunirniiniieneneeeeneeeeeeeeeeeeeeeeen s, 67
i

3.1.2.5 Restoring Repaired Network Hardwareccooeeiiiiiinins 69

3.1.3 Network Manager Utility Operations......ccceeveeeeieiiueiiiiiiieiaiiieannns 70
3.1.3.1 Enabling and Disabling Links......c.ccciciiiiiiiiiiiiiiiiinnin.. 71

3.1.3.2 Formatting Node MeSSagescceiveiieiiiviinieiuecineiniennsennns 73

3.1.3.3 Recording Status Changes for Failed Nodes........cccevviinnenne 74

3.2 VO Sequencer UtHItiesoooviiiniiiiviniiiiiiiiiiniiiiienaen 13
3.2.1 Principles of IOS Operationccccoiviiiiiiiiiieiiiiinieincieeienaneans 75
3.2.1.1 TOS Data TYPES ..vviurenteneraneeaseresiecsnesutiassonsssecsnseanssas 76

3.2.1.2 IOS Instructions and Programsc.cccvieeiuieneeraveinioneens ..78

3.2.1.3 TOS ACCESS TYPES cuviiutinieneeanrereiantiutiietietenecescesnecnecnns 81

3.2.1.4 I0OS Dual Ported Memory Usagecooevuiiuiiniiniiniinniniinnns 87

3.2.1.5 IOS Low Level Utilities...coureeriiiiiieiiiiiiiieiieeneineeiiiennes 91

3.2.2 TOS IniHAlZAtON ..eueenerneeieiaineneaniieneierteiiatienesrenirararonssaesenss 94
3.2.3 TOS T@StME. . euueneeneeineaeeneeneneretintesetantentestnesniantesssssessnsennns 95
3.2.3.1 DPM MemOry TestS....ccccvvtiuiieruiineiieieiiiiennniieiecsennans 95

3.2.3.2 Tests for Correct IOS Operation........ccovevieiniiniiniiieiniinanns 99

3.2.4 1IOS Utilities for I/O Network Managercoooeiuveeninneniieiencnen. 102
3.2.4.1 Execution of Node Reconfiguration Chains............cccvennee. 104

3.2.4.2 Execution of Status Collection Chains..........ccocevieiiiiiine. 109

3.2.4.3 Management of Status Collection Transactions................... 111
3.2.4.4 Testing for Presence of Babbler on Network. 114

3.3 YO Network Databases.......c.ccccciiieiiiiiiiiiiinireriemiiiiiieeaiuesiaenneeees 115
3.3.1 VO Central Database.ccuiuiiuieeinerieiaieiiiariniieitiiaienrnereeansenas 115
3.3.2 /O Local Database.....ccoveereiiaeneieeneiniitenioneenrnersensensonesesecenns 117

3.4 VO Network Status........ocueuieniniiiiirenineieeieerenearaeeeeaencnnns eeeeeeaeaan 118
3.4.1 Network Hardware Statusc.ccoceviiiiiiiieiiiiiiiniiiiiiiiiniiiinenan. 119
3.4.2 LOGICAl SEAMUS ...vvvuvneeeeeeirrrinieeeereennnnneeeeeesnrnnnneeesnsaneneeesenn122

3.5 TONEWOrK LOZSucuuiniininiiiiiiiiiieiei ettt teen st eeeeanraeneeneanens 123
3.5.1 O EOr LOg. . e iuiiiiiieiiiiiiiiiieieeeneeeeaiaeeneraenaensensensaneanennas 123

3 5.2 JJOEVENtLOZ c.ueneiniiiiiieiiiiiiiiiiiiiitieeeteieeeneeeeaanenseneanennanns 124

3.6 YO Network Status MONItOr............ccuiiuiuiiieeeieaiteiiieeneeeeeereenannnn. 124
3.7 YO Network Data DiCONAryoeieueeeriniieniiiniiieeeireasesenenenenenanens 126
ADA IMPLEMENTATION OF THE YO NETWORK MANAGER 139
. CONCLUSIONS AND RECOMMENDATIONS e eeeteettee e raaeaanans 235
5.1 Testing Of Network Manager Software............ccccevreevreenneerncniannnenn. 235
5.2 Future WOorK. ..o e e ere e er e aan e 235
REFERENCESt ee e erett s e re e e e ene e eaeas 239
APPENDIX A: GLOSSARY OF TONETWORKTERMEScccocvieiinrininnenannnnnns A-1

APPENDIX B: I/O SERVICE OPERATING RULES: NETWORK TOPOLOGY,

GPC CONNECTIVITY AND I/O REQUEST DEFINITION.......

APPENDIX C: INPUT/OUTPUT SEQUENCER (1I0S)

APPENDIXD: NODE SPECIFICATION

...............................

--

LIST OF ILLUSTRATIONS

Figure . Title Page
AIPS Distributed Configurationc.cuuviieriuneuieeiiiiiieiieenreieneeeeeeenreeeerneens 3
AIPS Systemn Design APProachiuesiiiiiiiniiiiiiiiiiieeeeeeeen e eeeeenenenenaas 6
Centralized AIPS COnfigUIation.......ovueiuiiniuiueniniieeneneneeeeeeneneneeneesaresnseennns 7
Top Level View Of System Servxces ... 8
Local System Services................. eeeeeeeiieeeeraeeettetcetetteatenteattttenttnttanncenans 9
Inter-Computer SeIVICES.....iiiiiiiiiiiiiniiiiiiiiiiiiieieeeeeeeeeeeeererreeeeeeerereeeesannes 10
System Manager.......coeeiiiiniieinininieeeniiiineeeenenenees Meenssecsanaassanasnassenanannnns 12
I/O S yStem SeIVICES...uiiruiiieriiiiieieeiiieier e et eeeneenneenseesnnseranseenssnnsenns 13

9. T/O Network With Root Links TO TWO GPCS.......ciuiiuiinieenieneneereeeeeeenennnnns 16

10. Data Flow Diagram of I/O Network Management SOftwareeevneneennenenn. 18

11. The Network Growth AlGOrithm.......ciiuuiiiuieniiiiiiiiniieieieeieeeeeieeeeneneeenaannn 25

12. NO Fault GrOWth. ...coiiiiiiitiiii ittt eneeneeeeeeeeneneaneeaenans 27

13. Network Growth Used To Isolate A Babbling Node................... [28

14. Identifying A Failed LINKcoouviuuiiiieeeeeenneneeeeeesseeneeeseeseesssnnsnaeesns 35

15. Removing-A Node And Reconnecting Its Branchescceeuvenveneeineenrenrennnnn. 39

16. 10S Instruction Format.......... e eteereetesetetietaaaaaaaaes eeeteeensettetttenteettetnannannn 79

17. FTP AQdress LINES ..c..ouuiiuiiuint ittt eeneeeeeaeeneenseneeneeneneensnans 83

18 IOS/DPM Functional MemoTy Map..........coeviveeeereeereeereereeeeeressessensessensenns 84

19. JOS Read Access MemOTY MaPuuueuniiiiiniiniieieeeneeeeneneeaanessnsnesnnenannns 86

20. I/O Network DiSPlay....cccccueeiieeirureeiiieesiiieieeeeeeeeeseeneeeeessesnresesesesesss 126

fRECEDING PAGE BLANK NOT FILMED

P \ 7/

1
o/
v : b"‘-—s.a.“;,\“_}n u...«.’u_.‘&_ii:g § { i/l El“

1.0 INTRODUCTION

This purpose of this document is to provide the software requirements and specifications
for the Input/Output Network Management Services for the Advanced Information
Processing System. This introduction and overview section is provided to briefly outline
the overall architecture and software requirements of the AIPS system before discussing the
details of the design requirements and specifications of the AIPS I/O Network Management
software. Section 1.1 is a brief overview of the AIPS architecture followed by a more
detailed description of the network architecture. Section 1.2 provides an introduction to the
AIPS system software. '

1.1 AIPS Architecture

The Advanced Information Processing System is designed to provide a fault- and damage-
tolerant data processing architecture, which can serve as the core avionics system for a
broad range of aerospace vehicles, for which NASA has direct or supporting research and
development responsibilities. These applications include manned and unmanned space
vehicles and platforms, deep space probes, commercial transports, and tactical military
aircraft.

AIPS is a multicomputer architecture composed of hardware and software 'building blocks'
that can be configured to meet a broad range of application requirements. The hardware
building blocks are fault-tolerant, general purpose computers, fault- and damage-tolerant
inter-computer and input/output networks, and interfaces between the networks and the
general purpose computers (GPCs). The software building blocks are the system software
modules: local system services, input/output system services, inter-computer system
services and the system manager. This system software provides the traditional services
necessary in a real-time computer such as task scheduling and dispatching, communication
with sensors and actuators, etc. The software also supplies those services necessary in a
distributed system such as inter-function communication across processing sites,
management of local and distributed redundancy, management of networks, and migration
of functions between processing sites.

The Advanced Information Processing System consists of a number of computers located
at processing sites which may be physically dispersed throughout the vehicle. These
processing sites are linked together by a reliable and damage tolerant data communication
‘bus’, called the Inter-Computer Bus (IC) bus. A computer at a given processing site may
have access to varying numbers and types of Input/Output (I/O) 'buses' which are separate
from the IC bus. The I/O buses my ie global, regional or local in nature. Input/Output
devices on the global I/O bus are available to all, or at least a majority, of the AIPS
computers. Regional buses connect I/O devices in a given region to the processing sites
located in their vicinity. Local buses connect a computer to the I/O devices dedicated to that
computer. Additionally, I/O devices may be connected directly to the internal bus of a

1

processor and accessed as though the /O devices reside in the computer memory (memory
mapped I/O). Both the I/O buses and the IC bus are time division multiple access
contention buses. Figure 1 shows the laboratory engineering model for a distributed AIPS
configuration. This distributed AIPS configuration includes all the hardware and software
building blocks mentioned earlier and was conceived to demonstrate the feasibility of the
AIPS architecture.

The laboratory configuration of the distributed AIPS system shown in Figure 1 consists of
four processing sites. Each processing site has a General Purpose Computer. GPCs may
be simplex or they may be Fault Tolerant Processors (FTPs) of varying redundancy levels.
Of the four FTPs, one is simplex, one is duplex, and two are triplex processors. A FTP
may also be quadruply redundant but none was fabricated for the AIPS laboratory
demonstration. The redundant FTPs are built such that they can be physically dispersed for
damage tolerance. Each of the redundant channels of a FTP could be as far as 5 meters
from other channels of the same FTP. '

The GPCs are all interconnected by a triplex circuit switched inter-computer (IC) network.
Each network layer forms a full two way 'virtual bus’ as explained in the next subsection.
The three network layers are totally independent and are not cross-strapped to each other.
In each network layer there is a circuit switched node for each processing site. Thus every
processing site is serviced by three nodes of the IC network. GPCs are designed to receive
data on all three layers of the network. The capability of a GPC to transmit on the network,
on the other hand, depends on the GPC redundancy level. Triplex FTPs are provided the
capability to transmit on all three layers, duplex FTPs on only two of the three layers, and
simplex processors on only a single layer. In duplex and triplex FTPs, a given processor
can transmit on only one network layer. Thus malicious behavior of a processor can only
disrupt one layer. :

The IC network and the GPC interfaces into the network are designed in strict accordance
with the fault-tolerant systems theory. Thus an arbitrary random hardware fault, including
Byzantine faults, anywhere in the system can not disrupt communication between triplex
FTPs. In other words, the triplex IC network, in conjunction with the GPC interfaces into
the network, provide error-masking capability for inter-GPC communications between
triplex computers. '

The laboratory demonstration of the Input/Output network is mechanized using a 15 node
circuit switched network that interfaces with each of the GPCs on 1 to 6 nodes depending
on the GPC redundancy level. The 15 I/O nodes can be configured in the laboratory as
global, regional, and locai Y4) networks to demonstrate various dimensions of the AIPS /O

concept. Further details of the network architecture are described in the following
subsection.

<4—b

10559201
xe|dwig

yiomieN
Jeindwoy-ieyy)

—(

SHHOMLIN ON

A

did

\fv\rﬁ

€dld
xejdng

\ /

/

SHHOMI3N O/

\

woalsAs bBuissasoid :ozm_.EoE._ paoueApy

J
!) suod pesn :\"

pieoqpealg Buuessuibug

an__s

b
did

\

—_—t—p

Figure 1. AIPS Distributed Configuration

1.1.1 AIPS Networks

For communication between GPCs and between a GPC and I/O devices, a damage and
fault tolerant network is employed. The network consists of a number of full duplex links
that are interconnected by circuit switched nodes. In steady state, the circuit switched
nodes route information along a fixed communication path, or 'virtual bus', within the
network, without the delays which are associated with packet switched networks. Once the
virtual bus is set up within the network the protocols and operation of the network are
similar to typical multiplex buses. Every transmission by any subscriber on a node is heard
by all the subscribers on all the nodes just as if they were all linked together by a linear bus.
Although the network performs exactly as a bus, it is far more reliable and damage tolerant
than a linear bus. A single fault or limited damage can disable only a small fraction of the
virtual bus, typically a node or a link connecting two nodes. Such an event does not
disable the network, as would be the case for a linear bus. The network is able to tolerate
such faults due to the richness of interconnections between nodes. By reconfiguring the
network around the faulty element, a new virtual bus is constructed. Except for such
reconfigurations, the structure of the virtual bus remains static.

The nodes are sufficiently intelligent to recognize reconfiguration commands from the
network manager, which is resident in one of the GPCs. The network manager performs
the necessary diagnostics to identify the failed element and can change the bus topology by
sending appropriate reconfiguration commands to the affected nodes.

Damage caused by weapons or electrical shorts, overheating, or localized fire would affect
only subscribers in the damaged portion of the vehicle. The rest of the network, and the
subscribers on it, can continue to operate normally. If the sensors and effectors are
themselves physically dispersed for damage tolerance, and the damage event does not affect
the inherent capability of the vehicle to continue to fly, then the digital system would
continue to function in a normal manner or in some degraded mode as determined by
sensor/effector availability.

Fault isolation is much easier in the network than in multiplex buses. For example, a
remote terminal transmitting out of turn, a rather common failure mode which will totally
disable a linear bus, can be easily isolated in the network through a systematic search where
one terminal is disabled at a time. Furthermore, for networks of moderate size, up to 50
nodes, most faults can be detected, isolated and the network reconfigured in milliseconds.

The network can be expanded very easily by linking the additional nodes to the spare ports
in existing nodes. In fact, 1 «2s and subscribers to the new nodes (I/O devices or GPCs)
can even be added without shutting down the existing network. In bus systems, power to
buses must be turned off before new subscribers or remote terminals can be added.

Finally, there are no topological constraints, as are encountered with linear or ring buses.
In fact, these are simply subsets of the fault-tolerant network architecture.

4

1.2 AIPS System Software

The AIPS system software along with the hardware has been designed to provide a virtual
machine architecture that hides hardware redundancy, hardware faults, multiplicity of
resources, and distributed system characteristics from the applications programmer. The
following section, 1.2.1, is a discussion of the approach that is used for the AIPS system
software design. Section 1.2.2 presents a brief high level description of the AIPS system
services that are provided for the AIPS system user. .

1.2.1 AIPS Software Design Approach

The approach used to design the AIPS system software is part of the overall AIPS system
design methodology. An abbreviated form of this system design methodology is shown in
Figure 2. This methodology began with the application requirements and eventually led to
a set of architectural specifications. The architecture was then partitioned into hardware and
software functional requirements. This report documents the software design approach
starting from functional requirements, to software specifications, to Ada implementation as
applied to Input/Output Network Management software. The I/O Network Management
software is a part of the I/O System services.

Hardware and software for the AIPS architecture is being designed and implemented in two -
phases. The first phase is the centralized AIPS configuration. The centralized AIPS
architecture, as shown in Figure 3, is configured as one triplex Fault Tolerant Processor
(FTP), an Input/Output network and the interfaces between the FTP and the network,
referred to as input/output sequencers (I0Ses). The laboratory demonstration of the
input/output network consists of 15 circuit switched nodes which can be configured as
multiple local I/O networks connected to the triplex GPC. For-example, the I/O network
may be configured as one 15 node network as shown in Figure 3, or as three 5 node
networks. The software building blocks that have been designed and implemented for the
AIPS centralized architecture include local system services and I/O system services. The
following subsection 1.2.2 will give an overview of all the AIPS software building blocks.
The rest of this document , Sections 2 thru 6, focuses on the software designed for the
redundancy management of the I/O networks.

1.2.2 AIPS System Software Overview

AIPS system software provides the following AIPS System Services (Figure 4): local
system services, communication services, system management, and I/O system services
The system software is being developed in Ada. System services are modular and naturally
partitioned along hardware building blocks. The distributed AIPS configuration includes

Application
Requirements

AIPS Attrlbut_es

AIPS Architecture
Specifications
&
Guidelines

System Software
Functional
Requirements

System Hardware
Functional

Requirements

System Software

System Hardware
Specifications

Specifications

IC System
Services

System
Manager

, Local System) /O System

Services Services

Figure 2. AIPS System Design Approach

all the services. Specific versions of the system software for different applications can be
created by deleting services from this superset. Shared resource allocation and redundancy
management are implemented only once but not necessarily in the same General Purpose
Computer (GPC). The other system services are replicated in each GPC. The following is
a brief description of each of the services.

15-NODE 1/0 NETWORK

7 L

DiU : , DIU

piu|

IOS 1 IOS 2 IOS 1110S 2 IOS 2

TRIPLEX FTP

O Node

- Active Link

— Spare Link

DIU Device Interface Unit

IS GPC/Network Interface (/O Sequencer)

Figure 3. Centralized AIPS Configuration

1.2.2.1 Local System Services

The local system services provided in each GPC are: GPC initialization, real-time
operating system, local resource allocation, local GPC Fault Detection, Isolation, and
Reconfiguration (FDIR), GPC status reporting, and local time management (Figure 5).

Figure 4. Top Level View Of System Services

The function of GPC initialization is to bring the GPC to a known and operational state
from an unknown condition (cold start). GPC initialization synchronizes the CPs,
synchronizes the IOPs and resets or initializes the GPC hardware and interfaces (interval
timers, real time clock, interface sequencers, DUART, etc.) It makes the hardware state of
the redundant channels congruent by alignment of memory and control registers. It then
activates the system baseline software that is common to every GPC.

The AIPS real-time operating system supports task execution management including
scheduling according to priority, time and event occurrence, and is responsible for
dispatching, and task suspension and termination. It also supports memory management,
software exception handling and intertask communication between the companion
processors (IOP and CP). The AIPS operating system is resident on every CP and IOP in
the system. It uses the vendor supplied Ada Run Time System (RTS), and, in addition,
provides those extensions necessary for the AIPS real-time distributed operating system.

The GPC resource allocator coordinates and determines responsibility for any global or
migratable functions from the system resource manager. It also monitors commands from
the system resource manager to start or stop any function.

The GPC status reporter collects the status information from the local functions, the local

8

SYS'I’EMv STATUS

Figure 5. Local System Services

GPC FDIR, the local time manager, the IC system services and the I/O system services. It
updates its local data base and disseminates this status information to the system manager.

The GPC FDIR has the responsibility for detecting and isolating hardware faults in the
CPs, IOPs, and shared hardware. It is responsible for synchronization of the redundant
channels of the bi-processor FTP, and for disabling outputs of failed channel(s) through
interlock hardware. Since each channel of an FTP has two processors (bi-processor), the
synchronization software is responsible for the tight synchronism of both redundant groups
of processors. After synchronization, all CPs are executing the same machine language
instruction within a bounded skew, and all IOPs are executing the same machine language
instruction within a bounded skew. GPC FDIR logs all faults and reports status to the
GPC status reporter. It is responsible for the CPU hardware exception handling and
downmoding/upmoding hardware in response to configuration commands from the system
manager. Itis also responsible for transient hardware fault detection and for running self
tests at the lowest priority in order to detect latent faults. This redundancy management
function is transparent to the application programmer.

The local time manager works in cooperation with the system time manager to keep the
local real time initialized and synchronized to the global real time. It updates local offset in
response to time broadcasts from the system time manager. It is responsible for reading the
real time clock and providing time services to all users.

\O

1.2.2.2 Inter-Computer Services
The inter-computer services provide two functions: inter-computer (IC) user
communication services, that is, communication between functions not located in the same

GPC; and the IC network management (Figure 6).

REALLOC FUNCTION
FLAG ALLOCATION

GPC STATUS

LOCAL IC STATUS

Figure 6. Inter-Computer Services

The IC user communication service provides local and distributed inter-function
communication as a transparent service to the application user. It provides synchronous
and asynchronous communication, performs error detection and source congruency on
inputs, records and reports IC communication errors to IC network managers. Inter-
computer communication can be done in either point to point or broadcast mode and is
implemented in each GPC.

The IC network manager is responsible for the fault detection, isolation and reconfiguration
of the network. The AIPS distributed configuration consists of three identical, independent
IC network layers which operate in parallel to dynamically mask faults in a single layer and
provide reliable communication. There is one network manager for each network layer.
However, the three network managers do not need to reside in the same GPC. They are
responsible for detecting and isolating hardware faults in IC nodes, links and the IC
interface sequencer and for reconfiguring their respective network layer around any failed

elements. The network manager function is transparent to all application users of the
network. '

1.2.2.3 System Manager

The system manager is a collection of system level services including the applications
monitor, the system resource manager, the system fault detection, isolation and
reconfiguration (FDIR), and the system time manager (Figure 7).

10

The applications monitor interfaces with the applications programs and the AIPS system
operator. It accepts commands to migrate functions from one GPC to another, to display
system status, to change the state of the system by requesting a hardware element state
change, and to convey requests for desired hardware and software configurations to the
system resource manager.

The system resource manager allocates migratable functions to GPCs. This involves the
monitoring of the various triggers for function migration such as failure or repair of
hardware components, mission phase or workload change, operator or crew requests and
timed events. It reallocates functions in response to any of these events. It also designates
managers for shared resources and sets up the context manager data base in each GPC.

The system fault detection, isolation and reconfiguration (FDIR) is responsible for the
collection of status from the inter-computer (IC) network managers, the I/O network
managers, and the local GPC redundancy managers. It resolves conflicting local fault
isolation decisions, isolates unresolved faults, correlates transient faults, and handles
processing site failures.

The system time manager along with each GPC local time manager has the job of
maintaining a common timebase throughout the system. The system time manager
indicates to the local time manager when to set its value of time. It also sends a periodic
signal to enable the local time manager to adjust its time to maintain synchronism with an
external time source such as the GPS Satellites or an internal source such as the real time
clock in the GPC which hosts the system time manager software.

1.2.2.4 1/O System Service

The I/O system service provides efficient and reliable communication between the user and
external devices (sensors and actuators). . The [/O system service is also responsible for the
fault detection, isolation and reconfiguration of the I/O network hardware and
GPC/network interface hardware (input/output sequencers).

I/O system service is made up of three functional modules: I/O user interface, 1/O
communication management and the I/O network manager (Figure 8).

The I/O user interface provides a user with read/write access to I/O devices or Device
Interface Units (DIUs), such that the devices appear to be memory mapped. It also gives
the user the ability to group I/O transactions into chains and I/O requests, and to schedule
I/O requests either as periodic tasks or on demand tasks.

The I/O communication manager provides the functions necessary to control the flow of
data between a GPC and the various I/O networks used by the GPC. It also performs
source congruency and error detection on inputs, voting on all outputs, and reports

11

communication errors to the I/O Network Manager. It is also responsible for the
management of the I/O request queues.

OPERATOR INPUT CONFIG REQUEST
REALLOCFLAG
SYSTEM STATUS CONFIG RESPONSE
-

IC STATUS TIME STATUS TIME REQUEST
| . +—
| FDIR SYSTEM TIME

GPC STATUS o
CONFIG
—_ CMND_
VO NET ~
SUBSCRIBER I/'O NFIG CMND IC NETWORK
ERRORLOG CONFIG \CAMND

Figure 7. System Manager

The I/O Network Manager is responsible for detecting and isolating hardware faults in I/O
nodes, links, and interface sequencers. The I/O network manager is also responsible for
reconfiguring the I/O network around any failed elements. The network manager function
is transparent to all application users of the network. Section 2 describes the functional
requirements and algorithms used for the network management software. Section 3 is the
software specification of the network management software, and Section 4 is a detailed
description of the Ada implementation of this software. Finally, Section S concludes with a
summary of results and suggestions for future work in this area. '

12

TUS Database VO Database

Channel
of frus rvo
Services 1/O Network
Specifications Specification Specification
/ IORID Channel

Network State

T Diagnostic Test
Iiagnost] -
V/O Request T |
Specification IOR yOR Commands
IOR Jout |
Output l Voted Congruent Node
l User Data Commands
Deta s ts 7 VO Network
ta Congruent Manager
$ Node Data Commands
&
Status
Ty : VO Status

Figure 8. 1O System Services

13

2.0 YO NETWORK MANAGER FUNCTIONAL REQUIREMENTS
2.1 Introduction

AIPS Input/Output Networks are briefly discussed in Section 1.1.1. Figure 9 shows an
AIPS configuration highlighting the features of an I/O Network. The figure shows an
AIPS system in which two GPCs are physically connected to an I/O Network. Each GPC
is connected to the network by means of two root links. The input/output operations on the
network are conducted by the I/O Sequencer (I0S) which is controlled by the GPC through
the Dual Ported Memory (DPM). The network shown consists of six nodes and four
Device Interface Units (DIUs). Sensors, actuators, displays and other I/O devices are
attached to the DIUs. The network exists to allow application programs executing on the
GPC to communicate in a highly reliable manner with these I/O devices. The high reliability
of the network is due to the fact that when a hardware component fails or is damaged by
some external event, the failed component can be isolated from the rest of the network and
communication can proceed along a new path in the network.

In the steady state, the communication path operates as if it were a conventional, time
division multiplex bus. It differs from a linear bus in that the data is routed by circuit
switched nodes along one of several possible paths. Each node in a properly configured,

- fault free network receives transmissions on exactly one of its enabled ports and then

retransmits this data from all its other enabled ports. Since the nodes are circuit switched,
the incoming data is not buffered. Hence, the network does not suffer from the
transmission delays associated with packet switched networks. The nodes provide a
richness of spare interconnections which can be brought into service after a hardware fault
or damage event occurs. The network architecture provides coverage for many well known
failure modes which would cause a standard linear bus to either fail completely or provide
service to a reduced subset of its subscribers. These failure modes include component
failures which result in babblers, i.e. subscribers which use the network in violation of
established turn-taking protocols and physical damage events which result in severed cables
or other component loss. :

Once a properly functioning virtual bus has been established, the nodes used to form the
bus remain in the active network until a component fails or is damaged. The configuration
of these nodes varies slowly over time to allow spare links to be brought into active
service. In response to failures, this process reconfigures the communication path to
exclude the failed component.

The ability to reroute dat« along different paths comes from the design of the node. An
AIPS node has five ports which can each be enabled or disabled. When the ports on either
end of a link are enabled, data is routed along that link of the network. In Figure 9 the
active links, i.e. those connecting two enabled ports, are shown as solid lines. The links
shown as dashed lines are spares. A message transmitted by the IOS in Channel A of

15
REGE (Y JSiEMUONALKE BhANM

PRECEDING PAGE BLANK NOT FILMED

GPC_1 would first reach Node 2. From there it would be simultaneously retransmitted to
Nodes 1. £ and 4. From Node 1 it would be retransmitted to Node 3 but not to Node 6
since the hux between Nodes 1 and 6 is a spare. From Node 3, the message would be
retransmitted to DIU_2 only. If the link connecting Nodes 1 and 2 were to be severed,
thereby interrupting service to DIU_2, the spare link between Nodes 3 and 4 could be

Channel A Channel B Channel C
A OOR S
10S 10S

FY VY PV IT I YY Y VEFPFPFFYP

»
N
1
»
¥
]
»
.

I0S

[BPM

10S
oW

Channel A

Channel B

Channel C

Active Link
---- Spare Link

enabled to restore full service to all the DIUs on the network.

16

GPC_1

DIU_4

GPC 2

Figure 9. 1/O Network With Root Links To Two GPCs

Another feature of the topology shown in the figure is the fact that GPC_2 is not actively
connected to the network. This is because the network shown is a local network, one
whose use is dedicated to a single GPC. However, if faults were to cause a degraded mode
of operation for GPC_1, the functions requiring access to the network could be migrated to
' GPC_2. The physical connections to GPC_2 are provided to support function migration.
However, this topology is also capable of supporting a regional network, i.e. one which is
shared among several GPCs simultaneously. If this were a regional network, GPC_2
would have an active root link to the network and both GPCs would then share the
resources of this network by contending for its use.

2.2 1/O Network Manager Interface to AIPS System Services

The I/O Network Manager is the software process responsible for establishing and
maintaining a communication path between processors (GPCs) and DIUs attached to the
I/O network under its control. Figure 10 presents a high level view of the I/O Network
Manager in relation to other software processes with which it interacts. The shaded regions
indicate the subprocesses of I/O System Services with which the I/O Network Manager
must interact. Non shaded regions are processes in other System Services. In particular,
the Resource Allocator is a subprocess within the System Manager and GPC FDIR and the
Operator Interface are part of Local System Services.

The Network Manager has two phases of operation: initialization and maintenance. When
the Network Manager is called by the Resource Allocator to manage a network, it enters its
initialization phase of operation. The Manager's activity during this phase of operation is
dictated by the reason for its activation. If the Manager is activated to manage a previously
inactive network, or when a graceful function migration is not possible, the Manager
establishes a virtual bus within the network and performs a full set of diagnostic tests on
each IOS and nodal port in the network. At the end of this initialization process, a fully
tested communication path exists between all properly functioning nodes, DIUs, and
GPCs in the network. This path is then capable of supporting serial communication among
all functioning network subscribers. If the mi gration of a Network Manager from one GPC
to another can be effected gracefully, data from the deactivated Manager is transferred to
the newly activated Manager. Thus, if the Manager is activated as part of a graceful
function migration, the initialization phase can be reduced to a software component only,
followed by a diagnostic test of the existing network configuration. Network
reconfiguration will only be necessary if this test uncovers faults in the network.

Having completed its initialization, this process notifies I/O Communication Services that
the network is in service and updates the status information on this network which is
available to other processes in the system. A potential user of this information is the System
Manager. The Network Manager then enters the maintenance phase of its operation.

- 17

Network ID

Node Responses,
Error Report

Netwo_rk

Node
Network
Status

Output

Packets Packets

Network

e

Figure 10 Data Flow Diagram of I/O Network Management Software

During the maintenance phase of its operation, the Network Manager provides services on
demand to the Resource Allocator and to the I/O Communication Manager. The Resource
Allocator calls this process when it wishes to halt the management of this network from this
GPC. This may be to effect a function migration or to support routine system maintenance.
The I/O Communication Manager calls this process for one of three reasons: to repair a
suspected network fault, to bring a repaired node, link or IOS back online, or to routinely
retire an active link and replace it with a spare link. The last operation is called spare link
cycling.

18

Although networks which are grouped together to form an I/O Service are operated in
parallel by the I/O Communications Manager when executing user chains or spare link
tests, this is not the case for a Network Manager. The I/O Communications Manager
controls simultaneous I/O activities on a set of networks in an I/O Service, but the I/O
Network Manager has access to only one network. The Network Manager is responsible
for network maintenance, that is, for reconfiguring the network in response to a fault. It
must be possible to reconfigure a network so that a failure in one member of an I/O Service
can be repaired without inhibiting communications in the other members which do not
have faults. Thus the operation of each Network Manager is completely independent of the
operation of any other Network Manager in the system. This feature is supported by the
protocol between the I/O Network Manager and the /O Communication Manager. When a
network is being maintained, it is under the exclusive control of the Network Manager.
However, other networks in the I/O Service remain under the exclusive control of the
Communications Manager.

The protocol between the Network Manager and the I/O Communication Manager to effect
a network repair operates as follows. Whenever the I/O Communication Manager detects a
communication error while using the network to conduct normal I/O operations for
application processes, it takes that network out of service and calls the Manager of that
network to repair the network. The I/O Communication Manager will not use this network
until the Network Manager has indicated that the network is repaired. When the Network
Manager is scheduled in response to a request from the /O Communication Manager for -
network maintenance, it becomes the sole user of the network until the repair is complete.
The Network Manager first executes a chain to collect some real time data from the
network. The chain requests each node in the network to report its status. The node should
respond with its current port configuration and the type of activity each port has seen since
the last time its status was read. This monitoring does not alter the node confi guration. The
node status reports are processed to determine what type of failures, if any, are present in
the network.

The Network Manager can detect and repair the passive failure of a node or port, the
passive failure of an IOS, the failure of the channel connected. to the active root link, a
network component which is babbling, a node which answers to addresses other than its
own, or a node which transmits on a disabled port. Once the failure mode has been
determined, an appropriate maintenance procedure is executed. The network is
reconfigured to remove the faulty component and restore communication to all non-failed
components in the network. Maintenance procedures are designed to reconfigure the
network in the fastest possible manner so as to restore use of the network to application
users as quickly as possible. After the reconfiguration of the network is complete, some
DIUs may be unreachable. A list of these unreachable DIUs is made available to the I/0
Communication Manager when the network is put back in service. This enables it to
deselect transactions to unreachable DIUs and to clear error counts against I/O devices
which were temporarily out of service due to network problems.

19

Spare link cycling employs a different protocol between the Network Manager and the /O
Communication Manager. The Network Manager prepares a set of commands which can be
sent to the nodes whenever the network has available bandwidth for this operation. This set
of commands is sent to the nodes at the discretion of the I/O Communication Manager who
is also in charge of using the network to communicate with devices for application
programs. Thus, the network is not taken out of service to conduct this test and the results
of the test are processed by the Network Manager when there is available processing time
on the system for this purpose. A semaphore mechanism enforces mutual exclusion
between the two Managers for data access privileges to the node commands. All spare
links, including root links, are routinely cycled to determine whether or not they are
operating properly and can therefore be reliably called into service to reconfigure the
network after a failure of some active link. Cycling spare links provides greater fault
coverage than merely testing a link and then restoring the active link to service since all
parts are exercised for longer periods of time. Spare links are cycled at a rate commensurate
with the desired fault detection latency and the testing overhead.

The protocol used by the two Managers when restoring a failed link, node or IOS to service
depends on whether or not the restoration can be effected without transmitting messages to
nodes on the network. In the case of a link, the restoration does not require the
transmission of node commands on the network. Hence, the network is not taken out of
service during a restoration of this type. However, a node or an IOS can only be restored
by reconfiguring the network, and this can only be accomplished by using the network to
transmit commands to nodes. Thus, these types of restorations do require that the network
be taken out of service during the restoration and returned to service once it is complete.

It should be noted that the procedure for restoring failed components in the present
Network Manager design is not automatic. Once a component has been declared failed, it
remains out of service until the Network Manager is requested by the operator (via the I/O
Communication Manager) to restore the failed component. The Network Manager does not
test failed components periodically to determine if they have been repaired. |

2.3 I/O Network Manager Interface to Subprocesses in I/O System Services

The 1/O Network Manager is supported in its operation ‘by various subprocesses within I/O
System Services. These are shown in Figure 10 as shaded regions. The function of each
of these subprocess is discussed here.

2.3.1 1/O Sequencer Utilities

The operation of the I/O Sequencer (I0S) is described in detail in the IOS Specification
(Appendix D). The IOS is a specialized hardware unit designed to have direct access to the
serial I/O Networks of an AIPS system. Its primary purpose is to offload the IOP from the

20

work needed to transmit and receive data. While it operates asynchronously from the IOP,
it is nevertheless under software control. This control is exerted through a set of registers
which allow the IOP to know the state of the IOS and to issue commands to the IOS. The
IOS operates by executing a program which the IOP has previously stored in the Dual
Ported Memory (DPM) shared by the IOP and the IOS. It transmits data which also has
been stored in the DPM and in turn stores incoming data from the network in the DPM.
The 1I0S is also able to contend for network use for its IOP. Under no fault conditions,
transmissions to network nodes are always followed by responses from the nodes. A
transmit/response pair is called a transaction. A set of transactions which are grouped
together sequentially for rapid and uninterrupted transmission on the network is called a
chain. The IOS is said to execute a chain of transactions when it contends for network use
and then executes a program which sends and receives data on the network without
interruption from any other GPC subscriber to the network. The Network Manager
configures the network nodes by using the IOS to execute chains of transactions which
communicate to the nodes. It also uses the error detection capabilities of the IOS to help it
diagnose faults in the network.

‘Since primary function of the IOS is offloading the IOP from the low level aspects of serial
communications, it is undesirable to reload the dual ported memory with IOS programs and
static data, i.e. data which does not change for each chain execution since this takes IOP
processing time. Hence, the dual ported memory is organized to hold all necessary
programs and data used by the IOS. -

232 I/O Databases

The I/O Network Databases serve as a repository of static information about I/O networks.
They contain a software description of the physical makeup of the I/O networks in the
system. They also contain the information necessary to map logical information related to
networks into its physical counterpart. For example, the logical identifier of a DIU would
be mapped to its physical address on a network. In the present implementation, the baseline
topology of an I/O network does not change in real time, i. e. the number of nodes, DIUs,
and GPCs in a network and the physical interconnections between them is fixed at run
time. Hence the information in the databases also does not change in real time either. The

databases also contain information about the organization of the I/O networks into I/O
Services. ' |

The 1/O Central Database holds information about every I/O network and every I/O Service
in the system. It is intended to support the use of mase storage which is accessible from
every GPC in the system. While there is only one logical I/ Central Database in any AIPS
system, an I/O Local Database resides on every GPC but only contains information about
the I/O networks to which that GPC is physically connected. When no mass storage device
is included in an AIPS architecture, the I/O Central Database will reside on every GPC. It

21

should be noted that there is no duplication of data in this case; the I/O Local Database
references the I/O Central Database directly.

The I/O Local Database references the I/O Central Database during program initialization to
obtain information about the networks to which its GPC is connected. Since one
characteristic of mass storage devices is a long access time, these accesses may be relatively
slow. Because speed is not important during system initialization, this slow access time is
not a problem. Using this information, the I/O Local Database deduces other information
about its networks and stores all this data locally. Deducing information about networks
whenever possible from more fundamental data has some advantages. It reduces the
amount of information that must be hand generated. This type of data entry is laborious,
and therefore costly. It is also error prone; thus the derived data is more reliable. When
another process in the GPC needs information about an I/O network, it will obtain this
information from the I/O Local Database. Unlike data retrieval from mass storage, these
memory accesses will be very fast.

2.3.3 1/O Network Status

I/O Network Status serves as a repository of information about the state of every network
in the system. The state of a network is comprised, in part, of the most current information
about the condition of its hardware as well as other facts which can be deduced from the
state of its hardware. Furthermore, since the network is a shared physical resource under
software control, the state is also comprised of information about which process has access
to the network at any given time, which IOS is active and which DIUs are reachable. Two
processes share responsibility for determining network status: the I/O Network Manager
and the I/O Communication Manager. Other processes which may be consumers of this
information include the Resource Allocator, the GPC Status Reporter, the System
Manager, and the I/O Network Status Monitor.

The hardware components in the network which are viewed as part of the AIPS system are
the nodes, the ports of the node, and the IOSs. (A link is defined as two ports on adjacent
nodes and the cable between them). While DIUs are physically part of the network, they
are not considered part of the underlying system but rather part of the application process.
In general, I/O System Services would not have enough information to determine whether
or not a given sensor, actuator, or other DIU component was functioning properly. What
I/O System Services can determine is whether or not it is possible to carry on error free
communications with a given DIU, where errors are defined as any violations of the strict
protocol which governs such communications. The state of the nodes and the I0Ss is
determined solely by the Network Mauaser. The hardware status is the Network
Manager's view of the network hardware made available to any other process in the
system. Of course, the actual physical state of the hardware may change many times during
network growth and reconfiguration. However, these transitionary periods are of short
duration. Therefore, the values stored by this process are stable values representing the

22

view of the Network Manager after any necessary changes in configuration have been
made. The state of DIUs, the rootlink currently in use, and who controls access to network
resources is determined jointly by the I/O Communication Manager and the I/O Network
Manager.

2.3.4 1/O Network Logs

While I/O Network Status records information for use by other software processes in the

system, there is a clear need for information about the status and history of network
~ hardware to made available to a human operator. Such information can be useful for online
system maintenance. It may also be an important input into mission critical decisions which
are under operator control. This process is responsible for keeping a log relating to the
history of network hardware for each network in the system. The Network Manager and
the /O Communication Manager both make log entries. An operator is able to display
those entries on a terminal.

2.3.5 I/O Network Status Monitor

Since it is helpful for the I/O network status to be easily visible to an operator, a network
status display is provided for each I/O network in the AIPS system. This status of the
AIPS 1/O networks may be displayed on a VT100 terminal or a VT240 color terminal,
depending on availability. -

The display is derived from the Network Manager's view of the status of the network
hardware. The display process periodically queries the I/O Network Status process about
changes in the status of the network. If changes have occurred since the last time the
display process obtained status information, it updates the display accordingly. The display
is not completely redrawn each time network status changes which produces a significant
gain in the response time of the display.

2.4 Algorithmic Considerations

2.4.1 Network Growth

Network growth is the process whereby the links between the nodes in the network are
enabled to form a virtual bus which supports communication among network subscribers
(GPCs and DIUs). Data flow in the network is controlled by the eonfiguration of the ports
in each node. For a link to carry data between two nodes, the ports at either end of the link
must both be enabled. Nodes retransmit messages received by an enabled port from its
other enabled ports, but not from the port which received the message. (The purpose of the
retransmission is to maintain the integrity of the waveform and only imposes a delay of one
half the transmission clock period.) When a node receives a message addressed to itself on
any port, disabled or enabled, it carries out the command encoded in the message and then

23.

transmits its status from all its enabled ports, including the port which received the message
if that port is enabled. A node obeys reconfiguration commands sent by the Network
Manager by enabling or disabling its ports in accordance with the value of the port enable
field in the command. Once the new configuration is in effect, the node returns a status
message. There are no restrictions in the overall network topology. However, for proper
operation, there can be no loops in the active network. The nodal ports which are enabled
may not establish aring. A data bit travels through each enabled link exactly once. Once it
is grown, a network operates like a time division multiplex bus.

Nodes are added one by one to the virtual bus. To determine which node to add next, the
Network Manager refers to the Network Topology, a database which describes all the
physical interconnections which exist in the network on a node by node basis. The:
algorithm used to add these nodes causes the bus to expand in a treelike manner. Because
of its resemblance to a tree, the nodes which are included as part of the virtual bus are said
to be part of the active tree. The growth algorithm generates a maximally branching,
minimum length path to every node in the network. This configuration is later changed in
order to cycle spare links and to repair faults. In addition to joining network nodes into a
virtual bus, the growth process is also concerned with enabling communication paths to
network subscribers: DIUs and remote GPCs. This is accomplished by enabling nodal
ports adjacent to these devices and determining whether or not these components obey the
protocols established for all functioning network components. The detection of protocol
violations results in the connection to the subscriber being disabled. In fact, the detection of
a protocol violation when any new link is called into service results in the disabling of that
link. Furthermore, the growth algorithm employs a set of diagnostic tests which exercise
every link in the network, including spare links. The tests can also detect the presence of
some malicious failure modes such as nodes which transmit on disabled ports and nodes
which respond to commands addressed to other nodes.

The network growth algorithm assumes that, although hardware faults may be present in
the network before the growth process commences, no additional faults will occur while
growth is taking place. However, if errors are detected during growth which indicate an

-additional failure, then the growth process begins again from the top. Failure modes which
produce this condition are the failure of the active root link, or the presence of a babbler. If
a fault occurs repeatedly after a network is partially grown, an intermittent failure can be
inferred. Strategies to deal with short lived, intermittent failures need to be developed.
However, this is beyond the scope of this functional design.

Network growth begins by establishing an artive root link to one of the root nodes and
ensuring that this root node has a port which ... be used as the springboard to the rest of
the nodes in the network. If an active root link is found, the remaining nodes are added to
the active tree. Any nodes which are not connected to the active tree after this stage is
complete are unreachable. At this point in the growth process only one root link to the

24

network has been enabled. After the nodal network is established through the active root
link, the spare root links to the network must be enabled and tested. In order to establish

Repeat until growth is successful or two attempts fail to produce a stable network:
Establish a working connection to a root node
If an active root link is established then
Add remaining nodes to the network
Mark idle nodes failed
Add spare root links
Add DIUs
Add Remote GPCs
Collect Node Status from all nodes in network as defined by topology
Validate Network Status
If no discrepancies in Network Status then
network is grown successfully
deselect transactions of failed nodes from the status collection chain

Figure 11. The Network Growth Algorithm

spare root links, the inboard port of each active root node is enabled. Next the network = -

subscribers, that is the DIUs and remote GPCs of a regional network, are connected to the
network. Finally, status is collected from all nodes in the network to verify that no failures
have occurred in the network during the growth process. If no discrepancies are found, the
node status chain is updated by removing transactions to nodes which have been identified
as failed. Figure 11 summarizes the major steps in the network growth algorithm. The
following discussion examines the logic employed in each major step in more detail.

For growth of a network to be considered successful, an active root link must connect the
GPC to the network. This implies the existence of a properly functioning IOS and, except
in the trivial case of a one node network, a root node which is able to communicate not only
with the IOS but also with at least one adjacent node. Establishing the connection is a two
step procedure. In the first step, the hardware is put in a state which supports
communication between the GPC and the root node. In the second step, the correct
operation of this hardware is verified. In an optional third step, a set of diagnostic tests is
performed. '

Since a GPC generally has more than one root link to a network, the approach taken is to
order the root links in some way and then to try them in turn until a properly functioning
counction is found. The ordering of the root links is based on their previous operating
history. The fewer the errors associated with a particular root link, the higher its priority in .
the ordering. The root link with the best record is tried first. If the first attempt to connect a
particular root node is not successful, the process is repeated a second time. The second try
is used as a filter for transient faults. |

25

The first step in setting up a root link is to configure the root node so that the port adjacent
to the IOS is enabled and all its other ports are disabled. The second step is to verify that
the hardware involved in the root link is operating properly and that this root node can be
used as a springboard to the rest of the network. The absence of communication or protocol
errors in the chain which sends the configuration command and receives the node's reply is
evidence of a properly functioning communication link between the IOS and the root node.
An optional set of diagnostic tests may be conducted at this point. These are described later
in more detail. If the root node passes all the diagnostic tests or if the tests are bypassed, a
determination is made about the ability of the root node to function as a jumping off point
for the addition of the remaining nodes in the network. If diagnostic tests are performed,
this determination is made by identifying a non-failed port on the root node which is
adjacent to another node. However, when diagnostic testing is bypassed, this is
accomplished by finding a link to an adjacent node which can be enabled without errors.

The algorithm for adding nodes to the network is designed to conduct an exhaustive search
for a properly functioning connection to every node in the network. The failure of a single
port of a node does not cause the entire node to be considered failed. However, some
nodes may not be reachable by any path; the identity of these unreachable nodes is apparent
only after this phase of the growth process is complete.

This stage of network growth begins after a root link has been established. The root node
becomes the first entry in the spawning queue, a data structure used to control the growth
of the network. An entry in the queue consists simply of a node which has been
successfully added to the network but from which growth has not yet taken place. Two
positions are marked in the queue: the top and the next entry. The top holds the node in the
queue from which growth is currently taking place. This node is called the spawning node.
The next entry is the next empty position in the queue. As nodes are added to the network,
they are placed on the spawning queue at the next entry point and the next entry point is -
advanced to point to an empty position in the queue. As growth of the network proceeds,
the topmost node in the spawning queue is removed from the queue and used as the
jumping off point, or spawning node, for further growth. The root node becomes the first

spawning node. Each node in the spawning queue is processed in turn until the queue is
empty.

The processing of the spawning node proceeds on a port by port basis. The action taken
depends on the kind of element found adjacent to each port. If the adjacent element is a
remote GPC or a DIU, the spawning node and the port of the spawning node facing that
element is recorded for future reference. These ports will be enabled after the network
nodal growth is complete. However, if the adjacent element is a node whose status is idle,
i.e. not yet part of the active tree, an attempt is made to enable the link to that node, referred
to as the target node. If the attempt to enable the link between these nodes is not successful,
the link is disconnected. If the attempt is successful, an optional set of diagnostic tests may

26

be performed on the newly added node. If the tests are not performed, the target node is
placed at the end of the spawning queue; otherwise, the target node is placed on the
spawning queue only after it passes the diagnostic tests. When all the ports of the spawning
node have been processed in this way, the next node in the spawning queue becomes the
spawning node.

Figure 12 shows the entries made to the spawning queue for the growth of a fault free, six
node network. Node 1, the root node, is the first entry. The three nodes adjacent to Node 1
are each added in turn to the network. As each node passes the set of diagnostic tests
described below, it is added to the spawning queue. When all the nodes adjacent to Node 1
have been added to the network, Node 2 becomes the spawning node. Node 2 has one
active link, an idle link adjacent to Node 3 and an idle link adjacent to Node 4. Since Node
3 is already active, the only node to be added to the network from Node 2 is Node 4. The
next spawning node is Node 6. Node 5, the only idle node adjacent to Node 6, is the last
node added to the network. Nodes 3,4 and 5 each become a spawning node. However,
since none of these nodes is adjacent to an idle node, no further nodes are added to the
network or to the spawning queue which is now empty.

Spawning Queue GPC

<4~ Top

N|RWR | |-

44— Next

Figure 12. No Fault Growth Algorithm

The growth algorithm also detects and isolates babbling network components, thus making
it a useful backup tool for network maintenance. When a port of a spawning node adjacent
to a babbling port on the target node is enabled, the babbler is detected because its babbling
transmissions interfere with the status report the spawning node sends following its
reconfiguration. Following the detection of the babbler, the spawning node is sent another
command instructing it to disable the port adjacent to the babbler, thus isolating the babbler
from the i=st of the properly functioning network. The method works because the network
links are full duplex in the sense that separate physical data links exist for the transmission
and reception of data. The reconfiguration command reaches the spawning node through a
path not corrupted by the babbler. If the spawning node itself is babblin g from the

27

spawning port, the target node will not respond to the corrupted message. Thus the target
node will not be connected to the babbler.

The use of the growth algorithm to isolate a node which is babbling from all its ports is
illustrated in Figure 13. Node 2 is shaded to denote it as the babbler. When Node 1 is the
spawning node, the attempt to connect Node 2 fails because the babbler causes violations
of the established communication protocols. Hence, Node 2 is not added to the spawning
queue. Nevertheless, Nodes 6 and 3 are added as before. Node 6 is the second spawning
node from which Nodes 4 and 5 are added to the active tree. When Node 3 becomes the
spawning node, a second attempt is made to reach Node 2. (A node may be babbling from
one port only.) When this attempt fails, Node 4 becomes the spawning node. Since Node 2
is still not in the active tree, a third and final attempt to reach Node 2 is made from Node 4.
Although Node 2 is babbling, the ports facing it on Nodes 1, 3, and 4 are disabled and
therefore its faulty transmissions cannot disturb other network communication.

Spawning Queue GPC

<4 Top

N R W] O\

g~ Next

Figure 13. Network Growth Used To Isolate A Babbling Node

As each node is added to the network, a series of fault detection diagnostic tests may be
performed. The tests are sequential in nature, and if any test fails, the remaining tests in the
sequence are not performed. The first three tests are conducted on each port of the newly
added node which is adjacent to an idle port of an idle node. This test sequence causes
every network link to be exercised during the growth process.

The first test determines if the link between two nodes can be activated. It is performed by
enabling the link between the newly added node and an adjacent node. If the attempt to
enable the link is successful, the link is left in the enabled state so that the next test can be
executed. If the link is not enabled, the ports on either end of the link are failed.

The second test determines whether or not the adjacent node transmits on a port after that it

has been disabled. In this test, a configuration command is sent to the adjacent node over
the newly enabled link instructing that node to disable all its ports. The node protocol is

28

such that it carries out this command before transmitting a reply. A properly functioning
node transmits a reply from all enabled ports to every command it receives. Since no ports
are enabled, this message should not be transmitted. Thus, the node passes this test if no
reply to the command is received. A node from which a reply is received is considered
failed and has its status marked accordingly. When starting the third test, the adjacent node
has all its ports disabled.

The third test determines whether or not the newly added node itself retransmits a message
from a disabled port. This test requires three transactions to be transmitted on the network.
The first transaction is sent to the newly added node commanding it to disable all of its
ports except the inboard port connecting it to the established network. The second
transaction is sent to the adjacent node commanding it to enable the port facing the newly
added node for one transmission only. The third transaction is sent to the newly added
node asking for its status. If the newly added node is functioning properly, it will not
retransmit any messages, including the command making up the second transaction, to the
adjacent node. On the other hand, if it has failed such that it does retransmit a message
from a disabled port, the adjacent node will send a reply which may or may not be
transmitted by the node under test back to the I0S. In either case, the transmission of this
message causes the valid message detector for the port facing the adjacent node to record
the transmission and to return this information as part of its status message. The newly
added node passes this third test if no message from the adjacent node is received and the
status indicator for the port in question shows no valid message received on that port.
However, if it fails the test, the status of the node is marked failed. When the above three
tests have been performed for every idle port of the newly added node, the newly added

node remains configured such that only its inboard port is enabled. It is then ready for the
last test.

If the preceding tests are completed without error, the last test is performed. This final test
determines if the newly added node responds to commands sent to other nodes in the
network. In this test, each node in the network is commanded to report its status, whether
or not it is in the active tree. If an unconnected node responds to this command, it implies
that the most recently connected node is responding to this address. Because of this
protocol violation, this node must be disconnected from the active tree. Furthermore, its
status is marked failed, since the address decoding function of a node is a central function,
independent of the port receiving the address. A previously connected node could also
respond with errors. This means that either this node has recently failed or the most
recently added node is talking out of turn. This last added node is then removed from the
network as described above. The node or nodes which had errors on the previous test are
again queried for status. If the error indicators are gone, it confirms the talker out of turn
hypothesis, and the status of the removed node is set to failed. If not, it indicates that a
failure has occurred during the growth process. In the former case, the growth process is
continued. In the latter case, the growth process must begin again from the start.

29

After every non-failed node in the network has been connected to the active tree, attempts
are made to establish spare root links. This is accomplished by enabling the inboard facing
port of every root node whose status is active but which is not connected to the active IOS
or to a failed IOS. Up to two tries are made to obtain an error free response from the root
node in this configuration. Each newly enabled root link is tested by collecting status using
that interface. The results of the attempt to set up this connection are used to update the
status of the interface. Successfully enabled root links have their status set to available;
demerits are scored against an offending root link.

If any DIUs are present on the network, ports adjacent to them are enabled next. These
components are checked for protocols established for all functioning network components.
If a protocol violation is detected, the connection to the subscriber is disabled.

For regional networks, the ports adjacent to remote GPCs are enabled last. Since a GPC
which is facing a port which is not enabled will not detect any network activity, it may be
attempting to use the network at the time the port is enabled. This could result in errors
being detected in the node's reply to its configuration command. Thus errors in the node
status which is returned after enabling the root node port of a GPC are ignored. To verify
that the GPC is in fact not babbling, however, the Manager asks for status from that node
in a chain executed with contention. If errors are detected by this chain, that port is
disabled.

After the initial growth of the network is completed, the status collection chain is executed
from the active root link. This is analyzed by looking for any discrepancies between the
status of the nodes in the network as determined by the process and the real time status of
those nodes. This is to confirm or disprove the assumption that failures did not occur in the
network during growth. If the real time data indicates the presence of a babbler, a failed
IOS, or failed nodes which the growth process reported as active, then a discrepancy exists
between the real state of the network and its state as determined during network growth. It
cannot be determined whether these failures occurred after growth of the network was
completed or during the growth of the network. Nodes which fail during the growth
process but after they have been added to the active tree do not have a failure attributed to
them but may cause other nodes to appear failed. Thus, the network is regrown. If the
second try is unsuccessful, an intermittent failure exists on the network. The present
algorithm does not handle intermittent faults. Hence, the network is declared to be inactive

and the Network Manager is stopped. It may be restarted after the cause of the problem has
been investigated.

The final step in network growth is to deselect transactions from the status chain which
would query failed nodes for status. These nodes are isolated from the network and
therefore cannot correctly return a status message even when the node is repaired. Errors
detected by the status chain also trigger network reconfiguration. Therefore, the
transactions are deselected. If the node is repaired, the operator can command the Network

30

Manager to reconnect the node to the network. At that time, the status transaction is
reselected.

2.42 Fault Analysis

The purpose of this process is to analyze the data provided by the IOS after executing the
status collection chain in order to identify both the type of fault responsible for the errors
and the faulty network element itself. Four analyses are performed: raw data analysis,
transient analysis, node data analysis, and error analysis. Each is described in this section.

While carrying out its principal function of sending and receiving data, the IOS detects
- various error conditions on the network. The IOS imparts this information to the processor
through several status registers and through a buffer of status information appended to the
incoming data of every input transaction. Further status information is obtained by
programming the IOS to copy the values of status registers to memory locations in the
DPM as the chain progresses. This information is referred to as raw data. The I10S
Specification in Appendix C provides details about the error detection capabilities of the
IOS. By analyzing this information certain failure modes are identified. These failure
modes are: an interface failure due to a failed FTP channel or failed IOS hardware, the
presence of a babbler on the network, and the failure of individual nodes to correctly follow
the communication protocol. The order in which this status information is processed is
important since the presence of a failed FTP channel connected to the active root link, a
_babbler, or a failed IOS precludes the analysis of other error indicators.

Raw data analysis begins by verifying that the channel connected to the I0S conducting this
chain has not failed during chain execution. There are two parts to this diagnostic
procedure: a data exchange pattern test and a call to GPC FDIR. Since GPC FDIR is a
periodic process, a small amount of time may elapse between the failure of a channel and its
detection by FDIR. The data exchange pattern test is used to detect a failed channel which
GPC FDIR has not yet uncovered. If the channel with the active root link has failed, non-.
failed channels will obtain invalid data from its IOS/DPM. This data should not be
processed since it could result in erroneous conclusions about the network. Similarly, if the
channel failed after the last check with GPC FDIR (before the chain data was loaded into
the DPM) but the failed channel has been resynchronized by GPC FDIR, then the data
exchange pattern test will show no errors but again the chain data should not be processed
since it may be invalid. To prevent this situation from occurring, GPC FDIR does not
report the status of a channel as okay until it has undergone a trial period in a
resynchronized state. This period is much longer than the longest chain delay. This means
that errors resulting from a channel which failed before voted data was written to the DPM
and which is now functionally resynchronized are still correctly attributed to the failed
channel. The way in which checks are performed on the status of the channel which
interfaces to the active I0S creates a window of time during which it is possible to
determine whether or not the channel has failed.

31

If no channel failures are detected, raw data analysis proceeds with the status information
provided by the IOS. If the value of the Chain Status Register (CSR) indicates that the
chain did not complete, a command is written to the Interface Command Register (ICR) to
stop the I0S. The IOS can be programmed to automatically time out individual transactions
but it does not provide an overall time out for an entire chain. This time out condition is
detected when the a chain does not complete in its allotted maximum execution time. A
check is then made of other error indicators to determine if an incoming babbler was
detected or if the IOS has failed. The indicators that are examined are the Interface Status
Register (ISR) which detects a stuck on high condition in the network, the contention state
of the IOS and the possession default indicator in the CSR, the extent to which the chain
did complete as indicated by the value of the solicited chain pointer, the extent to which the
IOS correctly performed its byte count zeroing function when executing a receive input
instruction, and the ability of the DPM to pass a read/write pattern test.

If a chain does complete, the status indicators in the CSR are cleared. Thus the analysis to
determine whether or not a babbler is present in the network is performed on the final value
of the CSR which is saved by the end of chain program prior to commanding the ICR to
switch modes (the definition of chain completion is a switch from the solicited to the
unsolicited mode of operation). The final value of the CSR is examined for an indication of
data transmission on the network while an output instruction is being executed by this IOS,
for indications that data was transmitted on the network during the polling sequence or that
a polling sequence was detected during data transmission by this IOS. The ISR is also
examined for the presence of a stuck on high condition. Any of these protocol violations
are evidence of a babbler on the network. If any of these errors are detected, a read/write

pattern test is performed on the DPM to ensure that the error is due to a babbler and not a
failed DPM.

Finally, the status information from each node transaction is examined for error information
as follows. The HDLC status, which is saved after the transmission of the command to the
node, indicates whether or not any framing or overrun errors occurred during this
transmission. If this error is detected, the I0S is considered failed. If the byte count kept
by the IOS on the data returned by the node still has its initial (non-zero) value, the IOS is
considered failed. This value should range from zero to fifteen. Fifteen is the correct byte
count, zero indicates no response is received from this node and any value in between is an
incomplete transmission from the node. The I0S when operating correctly will zero this
byte count and then start to increment it as data is received from the node. When the initial

value has not been written over by the 10S, it is assumed that the 10S is not cp=rating
correctly.

In the cases where the error is attributed to a failed IOS, no further error processing is
performed. However, some errors are attributed not to the IOS but instead to the
transaction itself, i.e. the node, whose status is being analyzed. Thus, if the byte count has

32

any other value except the correct byte count of fifteen, the error is attributed to the
transaction itself and not to the IOS. In particular, if the byte count is zero, then no
response was received from this node. The status of each transaction is then examined for
the presence of HDLC protocol errors, the transmission by the node of an incorrect number
of residual bits and an invalid sumcheck appended to the message. Should any of these
errors be detected, a read/write pattern test is performed on the DPM to be sure that the-
error is not attributable to a failed DPM memory. When a transaction has no errors scored
against it, the data associated with that transaction is returned to the Network Manager.
However, if the transaction has errors scored against it, no data from that transaction is
returned. When all the transactions have been subjected to this error analysis, the raw data
analysis is complete.

Transient analysis provides a coarse filter between transient and permanent faults in the
network. Automatic retries of those chains which produce error symptoms weed out
transients. However, distinguishing between a true transient fault which occurs one time
but is not reproducible and an intermittent or recurring fault is a very difficult task which is
not pursued in the present design. The retry filter reduces the likelihood of a transient fault
being diagnosed as a permanent fault. To deal with intermittent faults a system of demerits
could be employed. If a fault is detected, but does not reappear in the retry, a demerit could
be charged to the hardware causing the error if that can be determined or to the éntire
network if a more specific cause cannot be found. As spare link cycling proceeds, active
links are retired temporarily from service. Over time the demerits will accumulate against a
link (or set of links) experiencing intermittent faults. These links can be kept out of service
for longer periods of time if their presence results in errors being detected. The demerit
scheme has been implemented for root link errors. In the present desi gn this information is
used to prioritize root links for use in network regrowth and reconfiguration operations.
Another area requiring further examination is the amount of time to wait between retries.
The present model assumes faults occur more or less instantaneously. However, this
-model may not be accurate for faults due to damage events.

Data analysis is the process whereby the node status information is examined to detect
faults in the network. A complete description of the data returned by a node is contained in
Appendix D, the Node Specification. In particular, this analysis identifies a node which is
transmitting from a port which should be disabled. This fault may or may not produce
other error symptoms. Since valid data from the nodes is not included in the report if an
interface failure or a babbler is present, data analysis only proceeds when these failure
modes are not detected. Similarly, data is not included from nodes which have errors
attributed to them during the execution of the status collection chain. However, since the
failure mode detected by data analysis czn produce error symptoms, data from error free
node responses is analyzed even when other node responses do have errors. The reception
of a valid message is recorded by an adjacent node even though it is configured to be
disabled. (Adjacent ports are always in the same configuration, either both enabled or both
disabled. They also have the same status, either both active, both idle or both failed.)

33

Thus, if a non-failed, disabled port reports the reception of a valid message, the node
adjacent to that port is transmitting from a disabled port. Of course, several nodes may
detect this fault if the node is transmitting from more than one disabled port but the fault is
attributed to the node transmitting on the disabled port not the node receiving the faulty -
transmission. However, if more than one node is found to have this fault, the analysis is
not successful. -

As its name implies, error analysis is the process of deducing which network element
produced the set of errors attributed to network nodes. Of course not all sets of errors are
amenable to analysis. The input space of this subprogram has many combinations which do
not pinpoint a specific network component as being faulty. Furthermore, the assumption
underlying all the deductive reasoning in the error analysis, is that only one component has
failed and this failure gives'rise to all the error symptoms.

If all the nodes in the network have errors, error analysis attributes the errors to a root link
failure. If some nodes have errors and some nodes do not, two possible failure modes are
considered: a failed link (or node) through which no transmission takes place or a single
node failure. The single node failure symptom could be indicative of a node which does
not respond to commands but which continues to retransmit messages as it did before the
failure. It could also be a node which itself is not failed but to whose address another node
in the network responds. The single node failure is easy to diagnose since exactly one node
in the status collection chain shows an error.

If more than one node has errors but fewer than all nodes have errors, the remaining
problem is to determine if the cause of those errors is a link or node whose
transmission/retransmission function is no longer operational. The basic idea is that when
a link or a node fails in this way, then all nodes downline of this fault also have errors.
The signature of such a failure is that nodes involved form a treelike pattern in the network.
It should be noted that another failure mode which would produce a similar pattern of
errors is a node which babbles on all its outbound ports. To determine if the observed
errors fit the pattern for a failed link, node or outbound babbler is a three step process. The
first step is to identify a node which qualifies as the root of the failed tree. Such a node is a
node which had errors itself but which has an inboard port (a port which receives
commands sent by the I0S) adjacent to a non-failed node. To prove this hypothesis,
exactly one node should have this characteristic. If more than one such node exist, the fault
is considered undiagnosable. However, if a root is found, the next step is to determine
whether or not all nodes downline of the root had errors attributed to them. This is
accomplished by a recursive algorithm. The algorithm processes information about the
current node. The first vulo¢ of the current node is the root of the failed tree as already
determined. The nodes adjacent to the outboard ports of (i.e. downline of) the current node
are examined. If such a node does not have errors attributed to it, the desired pattern is not
present and the fault is considered undiagnosable. However, when the nodes downline of
the current node do have errors, the recursion continues until every node downline of the

34

root of the tree has been visited. If a treelike pattern is established, the last part of the
pattern checking process can proceed. This step verifies that all the nodes which had errors
appeared in the failed tree, i.e. no nodes with errors lie outside the tree. If nodes with
errors are found outside the tree, the fault is considered undiagnosable. The final
determination of whether or not the fault is due to a failed link, a failed node, or an
outbound babbler is made during network reconfiguration.

Figure 14 shows a network which has a broken link. In this situation, the status collection
chain would report no responses from the shaded nodes in the figure. Since Node 2 is the
only node with an inboard port facing a non-failed node, it is identified as the root of the
failed tree. Furthermore, all nodes downline of Node 2 are failed and no nodes outside the
tree had errors. Thus, error analysis identifies this fault as a failed link between Node 1

and Node 2 or a failure of Node 2. The final identification of the fault takes place during
network reconfiguration.

GPC

Figure 14. Identifying A Failed Link

2.4.3 Reconfiguration

The purpose of this process is to reconfigure the network so as to restore error free
communication to all reachable, non-failed nodes in the network. The reconfiguration
action depends on the type of failure determined by the fault analysis process. The fault
identified in this report-is actually a hypothesis about what is causing the errors on the
network. The reconfiguration process, in effect, tests this hypothesis and then verifies that
the network is again fully operational. Therefore, the network may go through several
intermediate configurations before the reconfiguration process is complete.

The network fault analysis process identifies six classes of faults: a root link failure, a
babbler, a link or node failure, a node which transmits from a disabled port, a single node

failure, and an undiagnosable failure. A separate strategy exists to deal with each of these
fault classes.

35

The reconfiguration process is considered complete when the node status chain is executed
on the reconfigured network and does not detect any errors. The backup strategem for
dealing with error phenomena which occur during a reconfiguration attempt but which are
not anticipated is network regrowth. This is also the strategy when the fault analysis has .
not been able to diagnose the failure mode. In both cases the network is regrown without
the fast grow option (i.e. growth without diagnostic testing) since the diagnostic tests
uncover failure modes which may produce unanalyzable error patterns, such as nodes
which respond to the addresses of other nodes and nodes which respond late and double
fault occurrences.

In general, reconfiguration strategies are designed to deal with both active and passive
faults in the hardware. Passive faults are characterized by the non-retransmission of data,
i.e. a barrier or obstacle to data flow in the network. A disconnected cable is an example of
such a fault; data cannot be retransmitted over this cable but transmission between other
connections in the network is not affected. Active faults are characterized by the disruption
of data flow in the network beyond the boundaries of the failed component itself. An IOS
with a transmitter stuck on high is an example of this type of fault; the stuck on condition is
retransmitted throughout the network, masking or disrupting transmissions between
network connections remote from the failed part. Since different faults- can produce
identical error symptoms, e.g. a broken root link and an IOS transmitter stuck on high
result in zero byte counts for all node responses, the reconfiguration algorithm must
identify the specific cause of the problem so as to effect a repair. In this example, the
passive fault (broken root link) only requires the selection of another root link. In the case
of an active fault (the IOS stuck on high), the faulty component must also be isolated.

When the fault hypothesis is a failed root link, the hardware comprising the root link comes
under scrutiny. This includes the IOS, the root node and the connecting cable. The
interface status of the channel connected to the failed root link is updated to reflect the cause
~ of the failure, a failed IOS or a failed channel. A spare root link, i.e. one that is connected
to an operating FTP channel and I0S, is then chosen to establish a new FTP connection to
the network. If no spare root links are found but at least one root link is connected to a
failed FTP channel, this process suspends itself waiting for the outcome of GPC FDIR
attempts to bring the failed channel back online. As a last resort, if no channels are brought
back after a reasonable delay, an attempt is made to regrow the network. This causes failed
root links to be tried one more time. However, in the case where spare root links are
available, each is tried in turn until a non-failed root link is found or until another type of
fault is diagnosed. The new interface is then used to execute the node status collection
chain. Next, the node configor tion table is updated to reflect the new root link; some
outboard ports will become inboard and vice versa. Using this new configuration, an error
analysis of the results of the node status chain is performed. If the analysis is
unsuccessful, indicating the presence of an undiagnosable failure mode, the network is
regrown. If no errors are detected, as would be expected in the case of a passive failure

36

involving only the IOS, the inboard port of the root node, and the cable between them, the
reconfiguration process is complete and the status of the new root link is marked active. If
another root link failure occurs, the status of this root link is marked failed and the next
available root link is tried. Finally, if either a babbler, or a link or node failure is detected,
the root link switch is considered successful but the reconfiguration process is not yet
complete. In this case, the reconfiguration process starts over again from the beginning,
with a new root link but this time dealing with a new fault. This behavior would be
expected for an active fault such as a babbling IOS or a passively failed root node which
now must be removed from the network so that service to nodes downline of it can be
restored. ’ ‘

When a babbler is detected in the network, the network is regrown using the fast grow
option. A babbler is an active fault and includes a stuck on high condition detected by the
IOS at its receiving interface to the network. (The IOS cannot observe a stuck on high
condition on its transmitting interface.) For a network of N nodes which has a babbler, the
cost of regrowing the network is N + P chains, where P is the number of spare ports on
the babbling node which must be tried until a non-faulty one is found. Strategies to reduce
this cost are possible in networks which are either maximally branching or fully linear. In
the latter case a binary search could be used. The node in the middle of the bus would have
its outboard port disabled and the location of the babbler deduced from the continued
presence or the absence of babbler symptoms on the network after the reconfiguration. For
the maximally branching network, a similar search could be conducted on each outboard
branch of a node. If disabling the port which leads to a branch eliminates the babbler's
symptoms, then the port is the gateway to the branch of the network containing the babbler.
However, the network configuration may be a mix of these two basic patterns. The cost of
finding the babbler is then not only a function of the number of chains necessary to
identify and isolate the babbler, but also the cost of deciding which type of search to
employ. In either case, once the babbler is identified by the search process, it must be
isolated from the other nodes in the network. The decision as to which algorithm is least
expensive depends to a large degree on the number of nodes in the network. More analysis
of the problem is needed to make an informed choice as to which strategy should be used

for a given network. The present design uses regrowth to reconfigure the network in
which a babbler is present.

A failed node generates the same error pattern as a failed link. Thus, when the fault analysis
reveals the presence of this failure mode, the reconfiguration algorithm must determine
which fault has actually occurred and reconfigure the network accordingly. It is first
assumed that a link has failed. The failed link is disconnected and an attempt to reach the
failed node, i.e. the node immediately downline from the link, is made by using any spare
ports on that node which are adjacent to nodes not in the failed node list. When this
strategy fails to restore communication with the failed node (possibly because no spare
ports are available), data is assembled which will allow each branch of the failed tree to be
reconnected to the active network. This data consists of a list of nodes for each branch of

37

the failed node, i.e. a separate list for each set of nodes which lie downline of each of its
outboard ports. Only one successful connection to any spare port on a branch needs to be
made in order to restore communication to the entire branch (and possibly to the failed node
and all other nodes in the failed tree). "A three transaction chain is used to reconnect the
branch to the network. The first two transactions enable the ports on either side of the new
link while the third transaction disables the former inboard port of the failed node in case
the node adjacent to that inboard port is a babbler. If the failed node correctly returns its
status, the repair is complete and the absence of errors is verified by collecting status from
every node in the network. If the failed node is still not reachable, the port connecting this
node to the present branch is disconnected and the proper functioning of the newly enabled
link is verified. Then all the nodes on this branch are removed from the failed node set. The
net effect of this process is to restore communication with all reachable nodes in the
network while isolating the failed node. As communication to each branch is restored, the
possible pool of spare links increases. Thus if any branch was not connected because of a
lack of spare links, this branch is retried whenever a connection to another branch is
successful. Any nodes which are still unreachable at the end of this process are marked
failed.

If a node retransmits valid data from a port which should be disabled, the node must be
removed from the network. This failure mode is distinguished from a babbler which is
always transmitting a random bit stream or is stuck on high. When a babbling port is
identified, the adjacent port of the neighboring node is disabled. This neighboring node
will not retransmit from its other enabled ports anything received by the disabled port.
Furthermore, the node will ignore any random bit patterns it receives. However, if the
neighboring node receives a request for status addressed to itself on a disabled port, it will
transmit its status from all its enabled ports, even though it does not retransmit the initial
request. If this failed node is not removed, each time the manager asks for status from the
node adjacent to this port, it would receive two valid commands to report its status. Only
one response is expected. Once the first response is received, another node will be
commanded to report its status. The second response of the node may interfere with the
reply of a node whose transaction is later in the chain, making it appear that this next node
has failed to respond correctly to a command. Once the failed node has been removed from
the network, status is collected from the remaining nodes to verify that in fact the fault has
been identified and isolated. If errors are still detected in the network, a full regrowth, with
a complete set of diagnostic tests, is performed.

Removing a node is a simple matter if the node is a leaf; only the link connecting it to the
network needs to be disconnected. This is accomplished with one chain. Otherwise, the
nodes downline from the failed node need to be reconnected to the network through
alternate links. If the node to be removed is the current root node, a new root link is
selected. The nodes downline of each outboard port of the failed node are added to a
reconnection queue, one queue for each branch which will be isolated when this node is
removed from the network. Each of these nodes is also added to a set of unreachable

38

nodes. The link connecting the inboard port of the failed node to the network is then
disabled. Next, an attempt is made to reestablish a connection to each isolated branch via a
spare link to a node in the reconnection queue of that branch from a node which is still
reachable, i.e. is not a member of the unreachable node set. Only one such connection
needs to be made to restore communication to all the nodes in the branch. After the new
connection is enabled, the link connecting the failed node to this branch is disconnected.
As each branch is reconnected, the nodes in that branch are removed from the reconnection
queue. If any branch is successfully reconnected, branches which were not connected
during earlier attempts are tried again since more spare links become available as
communication is restored to nodes in other branches. This algorithm, while isolating the
failed node, restores communication to every reachable node in the network. Nodes which

cannot be reached because earlier failures have depleted the pool of spare links are marked
failed. .

Figure 15 illustrates the steps needed to isolate a node from the network. Suppose that
Node 2 is to be removed from the network. First the link connecting Node 2 to Node 1 is
disabled. When this step is completed, Nodes 2, 3, 4, S, and 6 are also isolated from the
GPC as shown in part II. Node 2 is the root of a tree with two branches, each of which
must be reconnected in turn. By enabling the link between Nodes 1 and 6 and
disconnecting the link between Nodes 2 and 4, one of these branches is reconnected to the ,
active network as shown in part III. Finally, a link is enabled between Nodes 5 and 6 and
the link between Nodes 2 and 3 is disabled. In this reconfiguration, Node 2 is isolated
while preserving several links in the network. In larger networks, the performance gain of
this approach over regrowth of the entire network is sxgmﬁcant

Figure 15. Removing A Node And Reconnecting Its Branches

A single node failure can occur if the failed node is a leaf node, if its retransmission
function still works correctly but its status reporting capability is impaired, or if another

39

node is responding to this node's address, making it appear that this node is failed. If the
failed node is the current root node, before proceeding, a new root link is selected from the
available spares, status is collected using this new root link, and a new error analysis is
performed. The failed node is then isolated from the network, as described in the previous
discussion, however, care is taken not to address this node directly because of the possible
addressing problem. When the node is isolated, this node is again queried for its status. If
a valid response is received, indicating the presence of a node which responds to the
addresses of other nodes, the network is regrown with a full set of diagnostic tests to
isolate this faulty node. Otherwise, an attempt is made to find an alternate route to this node
using any port except its previously failed inboard port. The configuration command sent to
this node as part of the link enabling procedure will disable the failed inboard port.

If two attempts to reconfigure the network have not succeeded in eliminating errors, then a
full regrowth is called for. This is the back up reconfiguration strategy, used when all else
fails. '

40

3.0 YO NETWORK MANAGEMENT SOFTWARE SPECIFICATIONS

3.1 YO Network Manager

Process Name: 1/0 Network Manager
Inputs: | I/O Network Identifier
Network Topology
Results of Spare Link Chain
Outputs: Network Status
Active Root Link
Unreachable DIUs
Network Usability
Data for Spare Link Cycling
Requirements I/O Network Functional Requirements,
Reference: Section 2.2,2.3
Notes: None.
Description:

An instance of this process will be created for each network connected to a GPC.
However, the process will remain in a quiescent state until it is activated by the Resource
Allocator. At any given time, only one of the GPCs connected to an I/O network will host
the activated Network Manager of that network. The activation of a Network Manager by
the Resource Allocator will only require the scheduling of an existing process on the
system. Memory allocation, process instantiation, and the initialization of variables used
by this process will already have taken place. In this way, the activation of a Network
Manager can be accomplished very quickly in real time if necessary.

When a Network Manager process is created, some software initializations take place
which need to be performed by this process one time only. These include obtaining the I/O
Network Identifier of the network it will manage, reading the Network Topology from the
- 1/O Local Database, and obtaining an initial copy of Network Status from I/O Network
Status. This sequence is accomplished during the power on phase of system operation.
This preliminary work is not considered part of the routine operations cf the Network
Manager.

Once it has been activated, the Network Manager will grow or initialize its assigned
network using the subprograms described in section 3.1.1. Once the network is
established, it writes the status of the network hardware as determined in the growth

41

process to Network Status where it can be examined by other system software services. It
also generates the first set of commands to be used as Data for Spare Link Cycling. It
signals the I/O Communication Manager that the network is ready for use by writing a
value of In Service to Network Usability and again enters a quiescent state. At this point it
can be deactivated and returned to its initially passive condition by a call from the Resource
Allocator or it can be called upon to reconfigure the network or process the Results of the
Spare Link Chain by the I/O Communications Manager. The subprograms involved in
network maintenance are described in section 3.1.2. Each time the Network Manager
initializes or reconfigures a network in response to a call from the I/O Communications
Manager, it indicates that it has completed its actions on the network by writing a value of
repaired to Network Usability. It also marks the Active Root Link and the list of
Unreachable DIUs for use by the I/O Communications Manager. If the Network Manager
is deactivated by the Resource Allocator it sets the Network Usability to out of service,
thereby signaling the I/O Communication Manager that it is no longer managing the
network.

The I/O Network Manager communicates with nodes by sending them commands and
processing responses which are formatted in accordance with the specifications detailed in
Appendix D, Node Specification. Section 3.1.3 describes the subprograms used to format
these messages and give the details of some low level utility routines used by the Network
Manager in network growth and maintenance operations.

42

3.1.1 Process Name: Network Growth

Inputs: I/O Network Identifier
Network Topology
Root Links
Fast Grow Option
Current Channel
Network Status
Network Configuration
Root Link History

Outputs: Current Channel
Network Status
Network Configuration
Root Link History

Requirements I/O Network Functional Requirements,
Reference: Section 2.4.1

Notes: None
Description:

This process makes two attempts to grow the network specified in the Network
Topology. The Network Topology describes all the interconnections which exist
in the network on a node by node basis. Network growth is accomplished by a set
of nested subprograms. The outermost subprogram verifies and validates the
results of a second subprogram which assumes that, although hardware faults
may be present in the network before the growth process commences, no
additional faults will occur while growth is taking place. This second subprogram
conducts the real business of network growth. It calls other subprograms to
finish the work of growing the network and then returns a boolean parameter to
its caller which indicates whether or not the network has been grown
successfully. For growth of a network to be considered successful, an active root
link must connect the GPC to the network (this implies a properly functioning
IOS and, except in the trivial case of a one node network, a root node which is
able to communicate with at least one adjacent node), and all non-failed nodes in
- the network must be part of the active tree. If the subprogram indicates tha.
growth is not successful, it is called a second time after a short delay has expired.
However, if the subprogram indicates that growth is successful, the calling
process causes the status collection chain to be executed from the active root link.
It analyzes this data by looking for any discrepancies between the status of the

43

nodes in the network as reported by the subprogram and the real time status of
those nodes. This is to confirm or disprove the assumption made by the inner
growth subprogram that failures did not occur in the network during growth. The
validity of the assumption is somewhat dependent on the length of time it takes to
grow the network. The faster growth is completed, the less likely a failure will
occur during growth. Thus this test makes the growth process more robust. If the
real time data indicates the presence of a babbler, a failed I0S, or failed nodes
which the growth process reported as active, then a discrepancy exists between
the real state of the network and its state as recorded by the subprogram. It can not
be determined whether these failures occurred after growth of the network was
completed or during the growth of the network. Nodes which fail during the
growth process but after they have been added to the active tree do not have a
failure attributed to them but may cause other nodes to appear failed. Thus, if a
discrepancy exists, the network is regrown. If the second try is unsuccessful, a
serious problem exists on the network requiring either a function migration or
operator intervention to correct the problem. In the second case, the network is
declared to be inactive and the Network Manager is stopped. It may be restarted
after the cause of the problem has been investigated. The choice of action is made
by the Resource Allocator. The rest of this section describes the algorithm used
by the second subprogram to grow the network. Subsequent sections describe
parts of this process in greater detail.

The inner subprogram which assumes no faults occur in the network after growth
has begun has access to the same input and output parameters as the calling
process. However, faults can occur during network growth. If these faults are
detected, the growth process begins again from the top. An example of this type
of fault is the failure of the active IOS. This subprogram tries up to two times to
grow the network. If faults continue to occur during the growth process or if an
active root link as defined above is not found, the subprogram indicates to the
calling process that growth was not successful.

Prior to growing the network, some software initialization is necessary. The
status of each node and network interface in Network Status is set to idle. The
growth algorithm assigns some non-idle value to the status of each network
interface before completing its work. The status of each port is also set to idle,
however, idle ports in non-failed nodes are acceptable and the port status will not
necessarily have a non-idle value after growth is complete. The status of the
hardware components in the network reflect their current status only, based on the
most recent data about those components, not on their history of failure. Another
part of initialization concerns the node status collection chain which resides in
Dual Ported Memory. It is modified to ensure the execution of a status collection
transaction for every node in the network. Finally, the counters which keep track
of the number of DIUs and interfaces to remote GPCs are initialized to zero.

44

The growth of the network begins by establishing an active root link to one of the
root nodes and ensuring that this root node has a port which can be used as the
springboard to the rest of the nodes in the network. If an active root link is found,
the remaining nodes are added to the active tree. The algorithm for adding nodes
to the network will be discussed in section 3.1.1.2. This process conducts an
exhaustive search for a properly functioning connection to every node in the
network. Once this connection is established, the status of the node is upgraded to
active. The failure of a single port of a node does not cause the entire node to be
considered failed. Some nodes may not be reachable by any path. However, the
identity of these unreachable nodes will be apparent only after this phase of the
growth process is complete. Since any node whose status is idle after network
growth is completed is not reachable by any port, its status will be given a value

. of failed.

After the nodal network is established through the active root link, the spare root
links to the network must be enabled and tested. If any DIUs are present on the
network, nodal ports adjacent to them are enabled next in a process called adding
DIUs. Finally, if this is a regional network, ports adjacent to remote GPCs must
be enabled in a process called adding remote GPCs.

The growth process is summarized below. Further details on each aspect of the
process are available in the indicated sections.

Repeat until growth is successful or two attempts fail to produce a stable
network
Establish a working connection to a root node (3.1.1.1)
If an active root link is established then
Add remaining nodes to the network (3.1.1.2)
Mark idle nodes failed :
Add spare root links (3.1.1.4)
Add DIUs (3.1.1.5)
Add Remote GPCs (3.1.1.6)
Collect Node Status from all nodes in network as defined by topology
3.1.2.1)
Validate Network Status
- If no discrepancies in Network Status then
Network is grown successfully

45

3.1.1.1 Process Name: Establish Root Link

Inputs: I/O Network Identifier
Network Topology
Root Links
Fast Grow Option
Current Channel
Network Status
Network Configuration
Root Link History

Outputs: Current Channel
Network Status
Network Configuration
Root Link History
Spawning Queue
Active Root Node Flag

Requirements I/O Network Functional Requirements,
Reference: Section 2.4.1

Notes: None
Description:

This process is called as the first step in the growth of a network. Its job is to set up a
properly functioning a connection to the network. The hardware involved in the connection
consists of an I0S, a root node, and the link between them. Establishing the connection is
a two step procedure. It requires that this hardware be put in a state which supports
communication between the GPC and the root node and that the correct operation of this
hardware be verified.

Since networks in general may have more than one physical connection to a GPC, the
_ approach taken is to order the root links in some way and then to try them in turn until a
properly functioning connection is found. The ordering of the root links is based on their
previous operating history. The fewer the errors associated with a particular root link, the
higher its priority in the ordering. The tally of errors is kept in the Root Link History. The
root link with the best record is tried first. The process is complete when a properly
function:ng voot link is found.

Each root link is tried in turn until a fully functional connection is established. If the first

attempt to connect a particular root node is not successful, the process is repeated a second
time. The second try is used as a filter for transient faults. When a successful connection is

46

made, the value of the Root Link Active Flag is set to true to indicate to the calling
subprogram that a working connection to the network has been made. Additionally, the
Current Channel is given the value of the FTP channel to which the active IOS is connected
and the Spawning Queue is initialized with the root node. If, on the other hand, no root
link is established, the value of the Root Link Active Flag is set to false.

The first step in setting up a root link is to configure the root node so that the port adjacent
to the IOS is enabled and all its other ports are disabled. This is accomplished by preparing
a command to the root node which causes it to configure its ports as described and then
executing a chain which sends the command to the node. Setting up the command is
accomplished by means of a utility routine described in Section 3.1.3. Sending the
command is accomplished by means of another utility described in Section 3.2.4.1. The
second utility returns a Configuration Report describing the errors, if any, that were
detected during the execution of the chain. :

The second step in setting up the root link is to verify that the communication hardware is
operating properly and that this root node can be used as a springboard to the rest of the
network. First the information in the Configuration Report is analyzed to determine
whether or not error free communication with the root node has taken place. The absence of
errors is evidence of a properly functioning full duplex communication link and implies that
the IOS and node hardware is fully operational. If the Fast Grow Option has not been
selected, a full set of diagnostic tests are conducted on the root node. These are described
in more detail in Section 3.1.1.3. If the root node passes all the diagnostic tests or if the
tests are bypassed because the Fast Grow Option is chosen, a determination is made about
the ability of the root node to function as a jumping off point for the addition of the
remaining nodes in the network. If diagnostic tests are performed, this determination is
made by identifying a non-failed port on the root node which is adjacent to another node.
This can be done by using the Network Topology and the Node Status information.
However, in the case when diagnostic testing is bypassed, this is accomplished by finding
a link to an adjacent node which can be enabled to support full duplex communication.
Once a root node which has at least one port which can be enabled to communicate with an
adjacent node has been found, the Node Status of this node is marked active, the port status
of the port adjacent to the IOS is also marked active, the Interface Status of this interface is
marked active, and the configuration of this node is recorded in Network Confi guration. To
accomplish the latter means that the Node Configuration of this node shows the enabled
port marked Inboard and the other ports marked Idleport. This process is then complete.

The preceding paragraph describes the actions taken by this process if the Configuration
Report indicates that no protocol errors are detected when the command to change its port
enable is sent to the root node. When errors are detected, they are processed before either a
second try is made or the next root link is tried. The error processing proceeds as follows.
If the error detected is a channel failure, a retry is not undertaken since it is unlikely that the
channel can be restored in time to make this a viable root link. Instead, the Interface Status

47

is marked Failed Channel and the next root link is tried. If the error detected is a Babbler,
the Contention Option is set to run the configuration chain without contention before the
retry is undertaken. A babbler on the network prevents a contention poll from running to
completion. Therefore, the command to the root node to disable all but its inboard port will
never be transmitted. However, the babbling may be due to some remote component.
Since the links are full duplex, only the incoming transmission line may be affected.
Executing the chain without contention causes the command to the root node to be
transmitted over the unaffected outgoing transmission line. Once the root node receives and
obeys this command, the babbling transmissions will not be retransmitted by the root node
to the IOS and the babbler error indicators will not continue to register the presence of a
babbler. If any other errors are detected such as no response or HDLC protocol errors, the
same configuration chain is simply run a second time. If errors are detected on the second
try, the interface is marked failed IOS, the status of the port adjacent to the IOS is also
marked failed and the next root link is tried.

48

3.1.1.2 Process Name: =~ Adding Nodes to Network

Inputs: I/O Network Identifier
Network Topology
Fast Grow Option
Current Channel
Network Status
Network Configuration
Spawning Queue

Outputs: Network Status
Network Configuration
Network Subscribers

Requirements ’ I/O Network Functional Requirements,

Reference: Section 2.4.1

Notes: None

Description:

This growth algorithm generates the shortest path from the source processor to any node in
the network. Furthermore, if a path exists to any node in a network, this algorithm ensures
that it will be found and activated, even if the network is degraded by failures.

This subprogram is called into service after Establish Root Link (3.1.1.1) has established a ,
fully operational root link to a root node of this network. The root node is the first entry in
the spawning queue, a data structure used to control the growth of the network. An entry
in the queue consists simply of the node number of a node which has been successfully
added to the network but from which growth has not yet taken place. Two pointers are
used to mark positions in the queue: the Top and the Next Entry. The Top points to the
node in the queue from which growth is currently taking place. This node is called the
spawning node. The Next Entry points to the next empty position in the queue. As nodes
are added to the network, they are placed on the spawning queue at the Next Entry point
and the Next Entry point is incremented to point to an empty position in the queue. The
spawning queue thus grows from the bottom. As growth of the network proceeds, the
topmost node in the spawning queue is removed from the queue and used as the jumping
off point for further growth. The root node becomes the first spawning node. The growth
algorithm then enters a loop in which each node in the spawning queue is processed in turn
until the spawning queue is empty.

The processing of the spawning node proceeds on a port by port basis. The action taken
depends on the kind of element found adjacent to each port. The identity of that element is

49

obtained from the Network Topology. If the adjacent element is a remote GPC, the
spawning node and the port of the spawning node facing that element is placed on the GPC
subscriber list. If the adjacent element is a DIU, similar entries are made to the DIU
subscriber list. These ports will be enabled after the network nodal growth is complete.
However, if the adjacent element is a node whose status is idle, i.e. not yet part of the
active tree, an attempt is made to set up a functional link to that node, referred to as the
target node. If the attempt is successful, the target node is placed at the end of the spawning
queue. Creating a functional link requires that a port of the spawning node and a port of the
target node be enabled; the spawning node is enabled first. Enabling this link is
accomplished by a utility subprogram, Enable Link, described in section 3.1.3. If the
attempt to enable the link between these nodes is not successful, the Enable Link
subprogram will disconnect the nodes. If the reason for the failure is the detection of a
babbler, this subprogram runs a test for a babbler to ensure that the attempt to disconnect
the babbling node was successful. If it is not, an exception is raised which causes the
growth to begin again from the start. When the attempt to enable the link is not successful,
the link is left in an disconnected state and the the status of the two ports used in the
connection are marked failed. When the link is connected successfully and the fast growth
option is selected, the target node is added to the spawning queue, its status is marked
active, the status of the ports connecting the spawning node and the target node are marked
active, and the new configuration of the two nodes is noted in Network Configuration. The
latter requires the configuration of the port in the spawning node to be marked outboard and
the configuration of the port in the target node to be marked inboard, reflecting the flow of
data with respect to the active I0S. However, if the fast growth option is not selected, the
target node is subjected to a set of diagnostic tests which it must pass before being added to
the spawning queue. These tests are described in section 3.1.1.3. If it does not pass these
tests, the status if the target node is marked failed. If it does pass the tests, however, it is
added to the spawning queue and the various status records are updated as before. When all
the ports of the spawning node have been processed in this way, the next node in the
spawning queue becomes the spawning node. Network growth continues until the
spawning queue is empty.

As mentioned above, this algorithm detects and isolates babbling network components,
thus making it a useful backup tool for network maintenance. When a port of a spawning
node adjacent to a babbler is enabled, the babbler is detected because its babbling
transmissions interfere with the status report the spawning node sends following its
reconfiguration. Following the detection of the babbler, the spawning node is sent another
command instructing it to disable the port adjacent to the babbler, thus isolating the babbler
from the rest of the properly functioning network. The method works because the network
links are full duplex and the reconfiguration command will reach the spawning node
through the data line not corrupted by the babbler. If the spawning node itself is babbling

from a spawning port, the target node will not respond to the corrupted message. Thus the
target node will not be connected to the babbler.

50

3.1.1.3 Process Name: Diagnostic Testing

Inputs: Node Under Test
Inboard Port of Node Under Test
I/O Network Identifier
Network Topology
Current Channel
Network Status
Network Configuration
Outputs: Network Status
Network Configuration
Passed Diagnostic Tests
Requirements I/O Network Functional Requirements,
Reference: Section 2.4.1
Notes: None
Description:

For each port of the Node Under Test adjacent to an idle node, a series of fault detecting
diagnostic tests is performed. The tests are sequential in nature, and if any test fails, the
remaining tests in the sequence are not performed. The first test determines if the link
between two nodes can be activated. The second test determines whether or not the
adjacent node transmits on the port adjacent to the Node Under Test after that port has been
disabled. The third test determines whether or not the Node Under Test itself retransmits a
message from a disabled port. After this set of tests is completed without error, the last test
is performed. This final test determines if the Node Under Test talks out of turn to
addresses of other nodes in the network. This test could be expanded to include the
addresses of DIUs on this network.

The first test is performed by using the Enable Link Utility routine described in section
3.1.3. If the attempt to enable the link is successful, the link is left in the enabled state so
that the next test can be executed.

In the second test, a configuration command is sent to the adjacent node over the newly
enabled link instructing that node to disable all its ports. The node protocol is such that it
will carry out this command before transmitting a reply. A properly functioning node
transmits a reply from all enabled ports to every command it receives. Since no ports are
enabled, this message should not be transmitted. Thus, the node passes this test if no reply
to the command is received. A node from which a reply is received is considered failed and

51

has its status marked accordingly. When starting the third test, the adjacent node has all its
ports disabled. -

In the third test, a chain of three transactions is transmitted on the network. The first
transaction is sent to the node under test commanding it to disable all of its ports except the
inboard port connecting it to the established network. The second transaction is sent to the
adjacent node commanding it to enable the port facing the node under test for one
transmission only. The third transaction is sent to the node under test asking for its status.
If the node under test is functioning properly, it will not retransmit any messages, including
the command making up the second transaction, to the adjacent node. On the other hand, if
it is has failed such that it does retransmit a message from a disabled port, the adjacent node
will send a reply which may or may not be transmitted by the node under test back to the
IOS. In either case, the transmission of this message will cause the activity detector and the
valid message detector for the port facing the adjacent node to record the transmission and
to return this information as part of its status message. The node under test passes this
third test if no message from the adjacent node is received and the status indicator for the
port in question shows no activity and no valid message received. If the node under test
fails this test, its status and the status of all its ports is marked failed. When the above three
tests have been performed for every port of the node under test adjacent to an idle node, the
node under test is configured so that only its inboard port is enabled. It is then ready for the
last test.

In the last diagnostic test, each node in the network is commanded to report its status,
whether or not it is in the active tree. If an unconnected node (i.e. one which is not on
either the spawning queue or the active node list) responds to this command, the most
recently connected node is talking out of turn to this address. This newly added node must
be disconnected from the active tree by setting the correct spawning node port to a null
state. Furthermore, its status in Node Status is marked failed, since the address decoding
function of a node is a central function, independent of the port receiving the address. A
previously connected node could also respond with errors. This means that either this node
“has recently failed or the most recently added node is talking out of turn. This last added
node is then removed from the network as described above. The node or nodes which had
errors on the previous test are again queried for status. If the error indicators are gone, it
confirms the talker out of turn hypothesis, and the status of the removed node is set to
failed. If not, it indicates that a failure has occurred during the growth process. In the
former case, the growth process is continued. In the latter case, the growth process must
begin again from the start.

52

3.1.1.4 Process Name: Cdnnecting Spare Root Links

Inputs: I/O Network Identifier
Network Topology
Root Links
Fast Grow Option
Current Channel
Network Status
Network Configuration
Root Link History

Outputs: . Network Status
Network Configuration
Root Link History

Requirements I/O Network Functional Requirements,
Reference: Section 2.4.1

Notes: None
Description:

This subprogram attempts to enable the inboard facing port of every root node whose status
is active but which is not connected to the active IOS or to a failed IOS. Up to two tries are
made to obtain an error free response from the root node in this configuration. If the fast
grow option is not selected, each newly enabled root link is tested by collecting status using
that interface. The results of the attempt to set up this connection are used to update the
status of the interface and root nodes. Successfully enabled root links have their status set
to available. Errors are tallied against the offending root link in Root Link History.

If the first response to the command enabling the port adjacent to the IOS reveals the

presence of a babbler, the second try is sent without contention. If this also indicates a
babbler is present, the root link is disconnected and the interface is marked failed IOS.

53

3.1.1.5 Process Name: Adding DIUs

Inputs: I/O Network Identifier
Network Topology
Current Channel
GPC Subscriber List
Network Status
Network Configuration

Outputs: Network Status

‘ Network Configuration

Requirements I/O Network Functional Requirements,

Reference: Section 2.4.1

Notes: None

Description:

The ports adjacent to DIU subscribers on the subscriber list are enabled one at a time. If no
errors are reported from this transaction, the port remains enabled. However, if errors are
reported the port is returned to an inactive state. An error detected after enabling this port is
due to a babbling DIU or a failure in the node adjacent to the DIU which occurred after the
node is successfully added to the network. In either case, at this point the only action taken
in response to the detection of an error is to return the port to an idle state. The final
configuration of the port is recorded in Network Configuration; the status is recorded in

Network Status. If the connection is operational, the port is marked outboard and its status
is marked active.

54

3.1.1.6 Process Name: Adding Remote GPCs

Inputs: I/O Network Identifier
Network Topology
GPC Subscriber List
Current Channel
Network Status
Network Configuration

Outputs: : Network Status
Network Configuration

Requirements I/O Network Functional Requirements,

Reference: Section 2.4.1

Notes: None

" Description:

The ports adjacent to GPC subscribers on the subscriber list are enabled one at a time. Once
the network manager gives other GPCs access to the network, the manager must use the
contention rules which govern access to a multi-user network. Since a GPC which is facing
a port which is not enabled will not detect any network activity, it may be attempting to use
the network at the time the port is enabled. This could result in errors being detected in the
node's reply to its configuration command. Therefore, errors in the node status which is
returned after enabling the root node port of a GPC are ignored.To verify that the GPC is in
fact not babbling, however, the manager must ask for a status read of that node with
contention. If the transmission has errors, that port is returned to a null status. This
command is first sent with contention. Only if the errors persist will the command be sent
without contention. This phase of network growth is complete when all the ports on the
subscriber list have been enabled and verified for proper functioning. Node Configuration
and Node Status are updated following each verification transaction.

55

3.1.2 Process Name: Network Maintenance

Inputs: I/O Network Identifier, Network Topology, Root Links,
Current Channel, Network Status, Network Configuration,
Error Report, Root Link History

Outputs: Current Channel, Network Status, Network Configuration,
Root Link History

Requirements I/O Network Functional Requirements,

Reference: . Sections 2.4.2, 2.4.3

Notes: None

Description:

The various services provided by this process are scheduled by the I/O Communication
Manager. The services provided are: status collection from the nodes in the network, spare
link cycling and fault identification and network reconfiguration. If spare bandwidth is
available on a network, the I/O Communication Manager may choose to collect node status
or to retire an active link and bring a spare link into service. If errors are detected during the
execution of an I/O request for an application program, during the execution of the node
status collection chain, or during the attempt to cycle a spare link, the I/O Communication
Manager takes that network out of service and allows the Network Manager to have sole -
access to the network until the reconfiguration has restored full service to all non-failed
network nodes and subscribers.

3.1.2.1 Process Name: Network Status Collection

Inputs: I/O Network Identifier
Active Root Link
Logging Enable
Outputs: Status Collection Report
Requirements I/O Network Functional Requirements,
Reference: Section 2.4.2
Notes: None.
Description:

Network Status Collection is the fault detection mechanism of the Network Manager. When
this subprogram is called, it is assumed that the Network Manager is in control of the

56

interface to the network, i.e. that the Communications Manager has taken the network out
of service. In addition to collecting status from each non-failed node in the network, this
subprogram performs some preliminary analysis of error information. This information is
obtained by the IOS as it attempts to execute the status collection chain, a chain which is
always executed with contention. The details of the execution of this chain are given in
Section 3.2.4.2.

The Status Collection Report provides the Network Manager with a summary of the error
information obtained from a preliminary analysis of the data which the IOS provides after
executing the a status collection chain. When the I0S transmits messages on the network to
a node, it observes aspects of the communication and records those observations in
registers and buffers for later processing. This constitutes a first stage of fault detection and
includes detection of the failure of a node to transmit a response to a command in a
reasonable amount of time, the presence of transmission errors on the network during a
response from a node, the incorrect number of words in a response, and other violations
of the communication protocol. In addition to detecting errors on transactions to individual
nodes, the overall performance of the network is monitored for failures which impede the
proper functioning of the contention sequence. These failures include a babbler which is
flooding the bus with meaningless signals and a data line which is holding the network in a
"stuck on one" condition.

The summary presents a synopsis of the information provided by the IOS with conclusions
drawn about the following error conditions: an interface failure, a babbler and individual
errors detected for each node. If the summary reports that an interface failure has occurred,
it also states whether the cause is a failed IOS or a failed channel connected to the active
IOS. If the summary reports that a babbler is present on the network, it also specifies
whether the babbler was detected during contention for the network or during data
transmission. When either of these errors are present, no further data is provided since the
integrity of this data is in question. Furthermore, the Network Manager's strategies for
reconfiguring the network to eliminate these problems do not require information from
individual nodes. Finally, if neither an interface failure or a babbler is detected, an error
indicator is provided for each active node in the network. This error indicator simply notes .
that an error has occurred. The error could be due to a variety of causes, including a no
response error, an HDLC protocol violation, or a check sum error. The type of error is
logged in the /O Network Error Log, however, it is not passed back to the Network
Manager, since its logic does not require this level of granularity in order to correctly
reconfigure the network.

In future implementations of the Network Manager, additional sources of information may
be used as part of the status collection aspect of network FDIR. In particular, this could
include information from the I/O Communications Manager about errors detected during
transactions with specific DIUs. For regional I/O networks, I/O Communication Managers
in remote GPC subscribers to the network would send this information to the Network

57

Manager over the intercomputer network. Errors reported by the I/O Communication
Manager when no errors have manifested themselves during node status collection are
evidence of transient faults in the network, faults with DIUs or connections to DIUs, or of
other faults which the Network Manager's use of the network does not trigger. This
information is useful in building up a statistical profile of network components. In future
AIPS implementations it may be possible to support multiple links to DIUs from different
nodes or even between different networks. With this capability, errors which result from
faults in the link between a node and a DIU (or because a node connected to a DIU is
failed) could result in a reconfiguration involving the active link to a DIU. Since the actual
data flow in the network is a function of the GPC using the network, errors detected by
remote GPCs may not be detectable by the Network Manager.It is possible to devise
algorithms for isolating this type of fault. However, this work is beyond the scope of the
present implementation.

3.1.2.2 Process Name: Network Fault Analysis

Inputs: I/O Network Identifier
Active Root Link
Network Topology
Network Configuration
Status Collection Report
Outputs: Error Analysis Report
Requirements I/0 Network Functional Requirements,
Reference: Section 2.4.2
Notes: None.
Description:

The purpose of this process is to analyze the data provided by the Status Collection Report
in order to identify the both the type of fault responsible for the errors and, if possible, the
faulty network element itself. This is accomplished by a set of subprograms. There are
three types of analysis which are performed: transient detection, data analysis, and error
analysis. Each is described in this section.

The Network Manager first filters the data in the Status Collection Report through transient
analysis. If this subprogram concludes that the error is a transient, no further analysis is
performed. However, if the fault is permanent, the data is screeened for errors first by
data analysis and second by error analysis. In some cases the analysis of the fault is not
completed by these subprograms; additional information is necessary before a final
conclusion can be drawn. In such cases, the analysis is continued by the subprograms

58

which make up Network Reconfiguration. This analysis is discussed in detail in Section
3.1.2.3. That section also describes the actions taken by the Network Manager in response
to the various conclusions arrived at in the network fault analysis process discussed here.

Transient Analysis is a subprogram which discriminates between transient and permanent
faults in the network. It accepts a Status Collection Report as an input parameter. If this
parameter indicates a fault is present in the network, it collects network status again and
compares the second report with the first. If the second report finds no faults in the
network, then the fault is assumed to be a transient. If the error reports are identical, then
the fault is deemed permanent, i.e. not transient in nature. Finally, if both reports agree that
a fault has occurred, but disagree on the nature of the fault, network status is collected a
third time. In this case, if the second and third reports agree, the fault is judged to be
permanent; otherwise a transient error is declared. The argument here is that perhaps a
permanent fault occurred during the execution of the first status collection chain. If this is
the case, the errors observed by the first and second status collections could be different.
Consider the following scenario. During the first status collection, a node reports its status
correctly, but then a link leading to that node is damaged, and other nodes downline of the
first node have errors logged against them. When status is collected a second time, the node
in question also has an error. Thus the first two reports do not agree, but the second and
third reports do. :

Of course this is a simplistic approach to a very difficult problem, namely differentiating
between transient and intermittent faults. A more sophisticated approach would be to
maintain a statistical history of faults and use this as the basis for isolating a component
which is intermittently faulty. However, this analysis is deferred .to more advanced
implementations of network fault analysis.

Data analysis is the second major part of network fault analysis. Data analysis is the
process whereby the status information returned by the nodes is reviewed for the purpose
of extracting information about faults in the network. A description of the data returned by
a node is contained in Appendix D, the Node Specification. These faults may or may not
produce other error symptoms. This subprogram takes the Status Collection Report as an
input parameter. Since valid data from the nodes is not included in the report if an interface
failure or a babbler is present, data analysis only proceeds when these failure modes are not
detected. Similarly, data is not included from nodes which have errors attributed to them
during the execution of the status collection chain. However, since these failure modes can
produce error symptoms, data from error free node responses is analyzed even when other
node responses do have errors. The purpose of this analysis is to detect a node which is
transmiiting from a port which should be disabled. The transmission may be simple,
random noise or a valid message retransmitted by a disabled port due to some fault in the
node hardware. This is detected when a node records any activity on the network (i.e. a
change in voltage from low to high or vice versa) or the reception of a valid transmission
by a non-failed port which the Network Configuration shows to be disabled or idle.

59

(Adjacent ports are always in the same configuration, either both enabled or both disabled.
They also have the same status, either both active, both idle or both failed.) If this condition
was detected previously, the status of the port which is adjacent to the failed port will have
a failed status, as well as disabled configuration. Hence, even though the port records the
continued presence of the babbler, the correct reconfiguration has been made to contain the
babbler and repeated error processing is neither necessary nor desirable. If more than one
node is found to have this fault, a report indicating an unsuccessful analysis is returned by
this subprogram. (Of course, several nodes may detect this fault but the fault is attributed
to the node transmitting on the disabled port not the node receiving the faulty transmission.)
When this fault is not present in the network, the report returned indicates no data errors
were found. Finally, if a node is found with this fault, the error report indicates this fact
along with the ID of the faulty node.

Error Analysis is the third and final subprogram in network fault analysis. As its name
implies, error analysis is the process of deducing which network element produced the set
of errors recorded in the Status Collection Report. Of course not all sets of errors are
amenable to analysis. The input space of this subprogram has many combinations which do
not pinpoint a specific network component as being faulty. In these cases, the subprogram
returns a value of undiagnosable errors. Furthermore, the assumption underlying all the
deductive reasoning in the error analysis, is that only one component has failed-and this
failure gives rise to all the error symptoms.

If the Status Collection Report indicates that an interface failure has occurred, the error

analysis report attributes the errors to a root link failure, indicating the root link which
failed and the cause of the failure, either failed IOS or failed FTP channel. In a similar
manner, if a babbler is reported, the error analysis report attributes the errors to a babbler.
If neither of these errors is present, the analysis proceeds with an examination of the errors
attributed to non-failed nodes in the network.

If all the nodes in the network have errors, the error analysis report attributes the errors to a
root link failure, indicating the root link which failed as before but also indicating the cause
as a failed IOS. If some nodes have errors and some nodes do not, two possible failure
modes are considered: a failed link (or node) through which no transmission takes place or
a single node failure. The single node failure symptom could be indicative of a node which
does not respond to commands but which continues to retransmit messages as it did before
the failure. It could also be a node which itself is not failed but to whose address another
node in the network responds. The single node failure is easy to diagnose since exactly one
node in the Status Collection Report shows an error. The reconfiguration strategy used in
this case is described in Section 3.1.2.3. If more than one node has errors but fewer than
all nodes have errors, the remaining problem is to determine if the cause of those errors
appears to be a link or node whose transmission/retransmission function is no longer
operational. The basic idea is that when a link or a node fails in this way, then all nodes
downline of this fault also have errors. The signature of such a failure is that nodes

60

involved form a treelike pattern in the network. It should be noted that another failure mode
which would produce a similar pattern of errors is a node which babbles on all its outbound
ports. To determine if the observed errors fit this case is a three step process. The first step
is to identify a node which qualifies as the root of the failed tree. Such a node is a node
which had errors itself but which has an inboard port (a port which receives commands
sent by the IOS) adjacent to a non-failed node. To prove this fault hypothesis valid,
exactly one such node should have this characteristic. If more than one such node exists,
the fault is considered undiagnosable. However, if a root is found, the next step is to
determine whether or not all nodes downline of the root had errors attributed to them. This
is accomplished by a recursive subprogram. The subprogram accepts a node as a
parameter; the node is referred to as the current node. The first call to the subprogram
passes the root of the failed tree as the input parameter. The subprogram examines the
‘nodes adjacent to the outboard ports of the current node. If such a node does not have
errors attributed to it, the subprogram returns a value of false and the fault is considered
undiagnosable. However, if a treelike pattern is established, the last part of the pattern
checking process can proceed. This step verifies that all the nodes which had errors
appeared in the failed tree, i.e. no nodes with errors lie outside the tree. If nodes with
errors are found outside the tree, the fault is considered undiagnosable. If all three steps in
the process support the failed link/failed node hypothesis, an error analysis report is
returned stating the fault is a failed link or a failed node. Additional information contained
in the report is the node number of the failed root of the tree, the port number of the inboard
port of this node, and a list of nodes in the tree. The final determination of whether or not
the fault is due to a failed link or a failed node is made during network reconfiguration.

61

3.1.2.3 Process Name: Network Reconfiguration

Inputs: I/O Network Identifier
Network Topology
Root Links
Active Root Link
Network Configuration
Network Status
Error Analysis Report
Outputs: Network Status
Network Configuration
Root Link History
Requirements I/O Network Functional Requirements,
Reference: Section 2.4.3
Notes: None.
Description:

The purpose of this process is to reconfigure the network so as to restore error free
communication to all reachable, non-failed nodes in the network. The action taken by this
process will depend upon the type of failure reported in the Error Analysis Report. The
fault identified in this report is actually a hypothesis about what is causing the errors on the
network. This process in effect tests this hypothesis and then verifies that the network is
again fully operational. Thus the network may go through several intermediate
configurations before the reconfiguration process is complete.

There are six classes of faults identified by the Network Fault Analysis process described
in Section 3.1.2.2. They are a root link failure, a babbler, a link or node failure, a node
which transmits from a disabled port, a single node failure, and an undiagnosable failure.
The Error Analysis Report indicates which one of these failure modes is presently causing
disruptions on the network. Depending on the type of fault, it may also contain some
additional information about the the source of the problem. A separate strategy exists to
deal with each of these fault classes.

The reconfiguration process is considered complete when the node status chain is executed
on the reconfigured network and does not detect any errors. The backup straiegem for
dealing with error phenomena which occur during a reconfiguration attempt but which are
not anticipated is network regrowth.

62

In general, reconfiguration strategies are designed to deal with both active and passive
faults in the hardware which makes up the root link. In particular, this includes the I0S,
the active ports of the root node, and the cable between the IOS and the root node. Passive
faults are characterized by the non-retransmission of data, sort of a barrier or obstacle to
data flow in the network. A disconnected cable is an example of such a fault; data cannot be
retransmitted over this cable but transmission between other connections in the network is
not affected. Active faults are characterized by the disruption of data flow in the network
beyond the boundaries of the failed component itself. An IOS with a transmitter stuck on
high is an example of this type of fault; the stuck on condition is retransmitted throughout
the network, masking or disrupting transmissions between network connections remote
from the failed part. Since the same error conditions generated by a broken root link could
also be generated by an IOS stuck on high, the reconfiguration algorithm must identify the
specific cause of the problem so as to effect a repair. In the case of a passive fault, this
means establishing another root link. In the case of an active fault, the faulty component
must also be isolated.

A subprogram called Switch Root Link is designed to reconfigure a network in the
presence of a root link failure. Prior to establishing a new root link to the network, the
Switch Root Link subprogram updates the interface status of the channel connected to the
failed root link to reflect the cause of the failure, a failed IOS or a failed channel. It also
increments the error count against the failed root link in the root link history. Next a survey
of the spare root links which are available to this network is conducted. An interface whose
status is failed because of a faulty IOS is not a considered to be spare. However, the
status of an interface which is failed due to an FTP channel failure may be upgraded to
available if GPC FDIR now reports the channel as back online. The survey provides a
prioritized list of spare root links, the lower the error count in root link history the higher
the priority of a given spare. '

If no spare root links are found but at least one root link is connected to a failed FTP
channel, the Network Manager process suspends itself waiting for the outcome of GPC
FDIR attempts to bring the failed channel back online. As a last resort, if no channels are
brought back after a reasonable delay, the Network Manager tries to regrow the network.
This will cause even failed root links to be tried one more time.

However, in the case where spare root links are available, each is tried in turn until a non-
failed root link is found or until another type of fault is diagnosed. First, the new interface
is used to execute the node status collection chain. Next, the node configuration table is
updated to reflect the new root link; some outboard ports will become inboard and vice
versa. Using this new configuration, an error analysis of the results of the node status
chain is performed. If the analysis is unsuccessful, indicating the presence of an
undiagnosabie failure mode, the network is regrown. If no errors are detected, as would be
expected in the case of a passive failure involving only the IOS, the inboard port of the root
node, and the cable between them, the reconfiguration process is complete and the status

63

of the new root link is marked active. If a root link failure occurs, the status of this root link
is marked failed and the next available root link is tried. Finally, if either a single node
failure, a babbler, or a link or node failure is detected, the root link switch is considered
successful but the reconfiguration process is not yet complete. In this case, the
reconfiguration process starts over again from the beginning, with a new root link but this
time dealing with a new fault. This would be the case for an active fault such as a babbling
IOS or a passively failed root node which now must be removed from the network so that
service to nodes downline of it can be restored.

When a babbler is detected in the network, the network is regrown using the fast grow
option since the detection and isolation of a babbler does not require any diagnostic testing.
However, if the fault analysis has not been able to diagnose the failure mode, the network
is regrown without the fast grow option since the diagnostic tests uncover failure modes
which may produce unanalyzable error patterns, such as nodes which respond to the
addresses of other nodes and nodes which respond late.

A subprogram called Repair Link or Node Failure is called to handle network
reconfiguration when the Error Analysis Report indicates the presence of a failed link or
node. Since a failed node generates the same error pattern as a failed link, this subprogram
must determine which fault has actually occurred and reconfigure the network accordingly.
The Error Analysis Report contains the node number of the node suspected to be failed, its
inboard port and a list of nodes which are unreachable as a result of this failure. It is first
assumed that a link has failed. The failed link is disconnected and an attempt to reach the
failed node, i.e. the node immediately downline from the link, is made by using any spare
ports on that node which are adjacent to nodes not in the failed node list. The chain used to-
reconnect this node to the rest of the network contains three transactions instead of the
usual two. The first two transactions enable the ports on either side of the new link; the
third transaction disables the former inboard port of this node in case the node adjacent to
that inboard port is a babbler. When this strategy fails to restore communication with the
failed node (possibly because no spare ports are available), data is assembled which will
allow each branch of the failed tree to be reconnected to the active network. This data
consists of a list of nodes for each branch of the failed node, i.e. a separate list for each set
of nodes which lie downline of each of its outboard ports. Only one successful connection
to any spare port on a branch needs to be made in order to restore communication to the
entire branch (and possibly to the failed node and all other nodes in the failed tree). Again a
three transaction chain is used, this time for a different purpose. The first two transactions
enable the ports on either side of the new link while the third transaction attempts to obtain
status from the failed node. If the failed node correctly returns its status, the repair is
complete and the absence of errors is verified by collecting status from every node ir' :he
network. If the failed node is still not reachable, the port connecting this node to the
present branch is disconnected and the proper functioning of the newly enabled link is
verified. Then all the nodes on this branch are removed from the failed node set. The net
effect of this process is to restore communication with all reachable nodes in the network

while isolating the failed node. As communication to each branch is restored, the possible
pool of spare links increases. Thus if any branch was not connected because of a lack of
spare links, this branch is retried whenever a connection to another branch is successful.
Any nodes which are still unreachable at the end of this exhaustive process are assigned a
status of failed.

If a node retransmits valid data from a port which should be disabled, the node must be
removed from the network. This failure mode is distinguished from a babbler which is
always transmitting a random bit stream or is stuck on one. When a babbling port is
identified, the adjacent port of the neighboring node is disabled. This neighboring node
will not retransmit from its other enabled ports anything received by the disabled port.
Furthermore, the node will ignore any random bit patterns it receives. However, if the
neighboring node receives a request for status addressed to itself on a disabled port, it will
transmit its status from all its enabled ports, even though it does not retransmit the initial
request. If this failed node is not removed, each time the manager asks for status from the
node adjacent to this port, it would receive two valid commands to report its status. Only
one response is expected. Once the first response is received, another node will be
commanded to report its status. The second response of the node may interfere with the
reply of a node whose transaction is later in the chain, making it appear that this next node
has failed to respond correctly to a command. Once the failed node has been removed from
the network, status is collected from the remaining nodes to verify that in fact the fault has
been identified and isolated. If errors are still detected in the network, a full regrowth, with
a complete set of diagnostic tests, is performed.

The subprogram which removes a node from the network is called Remove Failed Node
and Reconnect to Trees. As the name implies, removal of a node is a simple matter if the
node is a leaf; only the link connecting it to the network needs to be disconnected. This is
accomplished with one chain. However, if the node is the root of a subtree in the network,

the nodes downline from the failed node need to be reconnected to the network through
alternate links.

If the node to be removed is the current root node, a new root link is selected from the
spare root links in the network. Prior to beginning the reconfiguration of the network, the
nodes downline of each outboard port of the failed node (i.e. the nodes on each branch of
the tree emanating from the failed node) are added to a reconnection queue, one queue for
each branch which will be isolated when this node is removed from the network. Each of
these nodes is also added to a set of unreachable nodes. The link connecting the inboard
port of the failed node to the rest of the network is then disabled. Next, a loop is entered in
which an attempt is made to reestablish a “ennection to each isolated branch via a spare link
to a node in the reconnection queue of that branch from a node which is still reachable, i.e.
is not a member of the unreachable node set. Only one such connection needs to be made to
restore communication to all the nodes in the branch. After the new connection is enabled,
the link connecting the failed node to this branch is disconnected. As each branch is

65

reconnected, the nodes in that branch are removed from the failed node set. If any branch is
successfully reconnected, branches which were not connected during earlier attempts are
tried again since more spare links become available as communication is restored to nodes
in other branches. Thus this algorithm, while isolating the failed node, restores
communication to every reachable node in the network. Nodes which cannot be reached
because earlier failures have depleted the pool of spares are marked failed.

If a single node in the network has errors, the reconfiguration is handled by a subprogram
called Reconnect, Remove or Regrow. This failure can occur if the failed node is a leaf
node, if its retransmission function still works correctly but its status reporting capability is
impaired, or if another node is responding to this node's address, making it appear that this
node is failed. If the failed node is the current root node, before proceeding, a new root link
is selected from the available spares, status is collected using this new root link, and a new
error analysis is performed. The failed node is then isolated from the network, as described
above in the discussion of Remove Node and Reconnect to Trees, however, care is taken
not to address this node directly. When the node is isolated, this node is again queried for
its status. If a valid response is received, indicating the presence of a node which responds
to the addresses of other nodes, the network is regrown with a full set of diagnostic tests
to isolate this faulty node. Otherwise, an attempt is made to find an alternate root to this
node using any port except its previously failed inboard port. The configuration command
sent to this node as part of the link enabling procedure will disable this failed inboard port.

If two attempts to reconfigure the network have not succeeded in eliminating errors and
network regrowth has not yet been tried, then a full regrowth is called for. This is the back
up reconfiguration strategy, used when all else fails.

Following the reconfiguration of a network, the Network Status is updated to reflect the
" current state of the network hardware. If any nodes have been isolated from the network as
a result of the reconfiguration, the transaction for that node is removed from the status
collection chain. A new set of commands to cycle a spare link are set up and the Network
State is given the value Repaired.

66

3.1.2.4 Process Name: Spare Link Cycling

Inputs: I/O Network Identifier
Network Topology
Root Links
Active Root Link
Network Configuration
Network Status

Outputs: Network Status
Network Configuration
Spare Link Cycling Log

Requirements I/O Network Functional Requirements,

Reference: Section 2.2

Notes: None.

Description:

This process determines whether or not spare links are operating properly by routinely
using a spare link as an active link in the network. When a spare link is called up for
service, an active link is retired. The spare links are said to be cycled through the network
since each spare eventually serves some time as an active link. The algorithm does not
insure that the ratio of the time spent in an active state to the time spent in an idle state will
be the same for all links. It does however insure that every idle link spend some time in an
active state on a regular basis. For a network with S spare links and a cycling period T,
each link in the network will be active at least T seconds of every ST seconds of operation.
Some links may never be taken out of service. Cycling spare links provides greater fault
coverage than merely testing a link since all parts are exercised for longer periods of time.
Spare links are cycled at a rate commensurate with the desired fault detection latency and
the testing overhead.

To cycle a root link does not require any physical changes in the network. Only the identity
of the active root link is changed. However, to cycle a link between two nodes does require
a network reconfiguration. The node on one end is arbitrarily designated the spawning
node and the node on the other end is designated the target node. If this results in the
spawning node lying on a branch downline of the target node, their roles are reversed.
First, the link connecting the target node to the node adjacen.to its inboard port is disabled
by commanding each node to disable the port corresponding to the link. (Since two nodes
have at most one link in common, this adjacent node is not the spawning node.) Next, the
configuration of the spawning node is modified so that the port adjacent to the target node
is enabled while its other ports retain their original configuration. The target node is then

67

reconfigured to enable the port adjacent to the spawning node. The four transactions which
cycle the spare link are executed in one chain, because the link switch must take place as an
atomic action on the network. Any one of these transactions alone would isolate some set
of nodes from the rest of the network.

When faults are identified in the network, the Network Manager sets up a new set of
transactions to cycle a spare link after every network reconfiguration. In the absence of
faults, after a spare link is cycled, the commands for the next cycle are set up. In order to
avoid a rotation between several links in the network which exclude some spare links from
the cycling process, an object called the Spare Link Cycling Log is created with one entry
for each link in the network. Whenever the network is grown or repaired, each entry is
given a value of untested if it is idle or tested if it is active or failed. As the cycling process
moves a spare link into active service, the corresponding log entry is marked tested. When
all the links are tested, the log is reinitialized as described above and the process repeats.
The spare links present at the start of a cycle are not in general the same set each time.

Although the Network Manager determines which link to cycle, sets up the necessary
transactions and processes the status and data returned by those transactions, it does not
execute the spare link chain. This is accomplished by the I/O Communication Manager
which runs a set of spare link chains in parallel in all the networks of an I/O Service when
time is available on that service. This does not require that the network be taken out of
service since the Network Manager does not use the network directly. The input/output data
for the spare link cycling chains is protected by a test and set locking protocol. When the
chain is complete, the I/O Communication Manager signals the Network Manager who then
analyzes the data and status produced by the chain. If errors are detected, the Network
Manager can set a flag which indicates whether or not the error can be repaired by restoring
the link that was last retired or whether the network needs to be regrown. When the I/O
Communication Manager detects the error, it signals the Network Manager to repair the

network. The Network Manager examines the value of this error flag before taking a repair
action :

68

3.1.2.5 Process Name: Restoring Repaired Network Hardware

Inputs: I/O Network Identifier
Network Topology
Root Links
Active Root Link
Network Configuration
Network Status
Restore Record

Outputs: Network Status
Network Configuration

Requirements I/O Network Functional Requirements,

Reference: Section 2.2

Notes: None.

Description:

The purpose of this process is to upgrade the status of a network component from failed to
either idle or active and, if necessary, to reconfigure the network to establish
communication with the parts of the network which were unreachable because of faults in
the component. The action taken by the Network Manager depends on whether the
restored component is a node or a link. Restoring a link does not require a network
reconfiguration; the status of the ports adjacent to the link are simply upgraded to idle.
Eventually, the operation of the link will be tested by Spare Link Cycling (3.1.2.4).
Restoring a node, however, does require network reconfiguration, since the node itself
must be reconnected to the active network. Furthermore, the node must be configured so
that network subscribers, DIUs and GPCs, adjacent to the node are reachable.

To restore a node, the Network Manager tries to establish a link to that node from some
active, adjacent node. The node to be restored is the target node and the adjacent node is
the spawning node. First, the status of all the ports on the target and of all ports adjacent to

- the target are marked idle. Attempts to reconnect the node which produce errors result in

the status of the respective ports being marked failed. When a connection is established, the
status of the respective ports are marked active and the status of the node is marked active.
Finally, ports adjacent to DIUs and GPCs are enabled. If no errors are detected, the
conneciion is left in place; otherwise, the connection is disabled. The Network
Configuration and the Network Status are updated when the process is complete.

Network components are presently restored to service only upon the request of an operator.
This request is channeled through the I/O Communication Manager. If the component is a

69

node, the network is taken out of service until the repair is complete since the Network
Manager uses the network to effect the repair. Once the repair is complete, the network is
put back in service. The repair is complete when the failed node is back online or when all
possible links to the node have been tried without success. If the component is a link, the
network is not taken out of service.

3.1.3 Network Manager Utility Operations

The purpose of this process is to provide the Network Manager with easy access to
frequently used operations. Two subprograms reconfigure the network, Enable Link and
Disconnect Link. Another subprogram takes care of updating the status of components
which are marked failed because they are adjacent to a failed node. A set of subprograms
format messages to nodes according to the node requirements described in Appendix D, the
Node Specification. A complementary subprogram converts the raw data in the node
response to a form more readily usable by the Network Manager. A final subprograms
generates a list of unreachable DIUs on a network for use by the I/O Communications
Manager. These are discussed in the following subsections.

70

3.1.3.1 Process Name: Enabling and Disabling Links

Inputs: I/O Network Identifier
Network Topology
Active Root Link
Network Configuration
Target Node -
Spawning Node
Target Port
Spawning Port
Contention Option
Maximum Retries

Outputs: Link Enabled

Requirements I/O Network Functional Requirements,
Reference: Section 2.4.1

Notes: None.
Description:

The Enable Link subprogram tries to enable the link specified by the caller which connects
the spawning port of the spawning node to the target port of the target node. It returns a
boolean valued record which indicates whether or not the connection was established and if
not, the type of error detected. The caller also may specify the maximum number of times
to try to establish the connection if errors are detected and whether or not the chain to effect
this reconfiguration is conducted with contention. The default is one try. This subprogram
sets up configuration commands to the nodes by using the subprograms described in
section 3.1.3.2. Only one port in each node has its configuration changed by these
commands. The configuration of the other ports as specified in Network Configuration are
left unchanged while the target port and the spawning port are enabled. The command to
the spawning node is executed first. The subprogram called to execute this chain is
discussed in Section 3.1.4.1. This subprogram returns a configuration report describing
any errors detected during the execution of the chain.

The information in the error report is analyzed to determine whether or not the link is fully
operaticaal. A link which is enabled after an error is detected is exercised one more time
before it is considered active as a coarse filter for intermittent failures. If errors are detected,
retries are attempted up to the specified limit. If the link is operational, the link enabled flag
is set to true; otherwise it is set to false, and the cause of the last error is returned in the
field of the record reserved for that purpose.

71

Disconnecting a link is a simpler process. The configurations of the target port on the
target node and the spawning port on the spawning node are set to idleport. The
configuration of the other ports is left unchanged. Commands are set up as before but the
order of the transactions is reversed, the command to the target node preceeds the command
to the spawning node. Errors detected during the execution of this chain are not processed,
however, the spawning node is queried for status (with contention) after the target node is
disconnected. Errors on this test chain cause the attempt to disconnect this link to be

repeated. A flag is returned to the caller indicating whether or not the link is successfully
disabled.

72

3.1.3.2 Process Name: Formatting Node Messages

Inputs: Configuration Lifetime

‘ Node Address

Desired Port Configuration

Outputs: Formatted Node Message
Requirements - Node Specification,
Reference: Appendix D
Notes: None.
Description:

This process converts the logical commands which the Network Manager sends to nodes
into formatted messages which the nodes can interpret. The format required by the node is
described in detail in Appendix D, the Node Specification. Since the underlying M680X0
based machine can operate most rapidly on data packaged as an integral multiple of an eight
bit byte, the Network Manager uses objects represented in this way to specify information
in a node message in order to improve its performance. However, the message which the
node can interpret is densely packed; each bit represents an aspect of the command. This
design reduces the amount of data transmitted serially over the network, further improving
performance. For example the lifetime of a port enable command (for all future
transmissions or for one response only) is represented by a byte of data for the Network
Manager but by a bit within a byte of the node message. The additional memory used by
the Network Manager to support this approach is negligible.

The Network Manager sends two types of messages to nodes: a reconfiguration command
and a request for node status. Hence, this process provides two subprograms to generate
these messages. The inputs to the first subprogram are the node address, the configuration
lifetime, and the desired port configuration. The second subprogram only requires the
address of the node which will receive the status command. The format of both messages is
the same. The subprograms copy the node address directly to the respective field of the
formatted message. They encode the address as required by the Node Specification. The
command they generate always requires the node to reply with a valid response from its
status buffer, to clear the status registers after this response, and to transmit the response
with three residual bits. They also append the correct checksum value for the message as
required by the communication protocol for the system.

73

3.1.3.3 Process Name:

Inputs:

Outputs:

Requirements-
Reference:

Notes:

Description:

This subprogram uses the Network Topology to identify the network components adjacent
to each port of the failed node and to update the status of those components accordingly. If
the adjacent element is a node, the status of the port adjacent to this node is marked failed.
If the adjacent element is a DIU, the status of the DIU is marked unreachable. If the
adjacent element is an FTP channel of the GPC hosting the Network Manager, the status of
the corresponding interface is marked failed IOS. Finally the status of each port in the

Recording Status Changes for Failed Nodes
Network Topology

Failed Node

Network Status

I/O Network Functional Requirements,
Section 2.4.1, 2.4.3 '

None.

failed node and the status of the node itself is marked failed.

74

3.2. /O Sequencer Utilities

The IOS is a complex piece of hardware. The correct operation of the IOS is made possible
by making an accurate software image of its many parts and by providing software
functions and procedures to simplify the use of its many capabilities. The IOS must be
initialized before it becomes operational. Furthermore, during the initialization process, it is
tested to ensure that is operating correctly. Finally, a set of subprograms is provided to
support the activities of the Network Manager. These subprograms execute chains and
analyze the error information provided by the 10S before passing data from the nodes to the
Network Manager. IOS initialization, testing and support for the Network Manager are the
functions of the software modules in this section.

3.2.1 Principles Of IOS Operation

In order to control the use of an I0S, a software bit for bit image of all its registers must
exist. Software templates will also be available to generate programs which the I0S will
use to execute chains. The primary function of the IOS is offloading the IOP from the low
level aspects of serial communications. It is therefore undesirable to reload the dual ported
memory with IOS programs and static data, i.e. data which does not change for each chain
execution since this takes IOP processing time. Hence, the dual ported memory is
organized to hold all necessary programs and data used by the IOS. While a good deal of
information about the organization of dual ported memory is needed by the IOP software to
control the operation of the IOS, it is not desirable to fill memory with an exact image of
each IOS. This is not only wasteful but unnecessary since the various IOSs operate
identically, even though they may execute different programs. A quick and easy way of
accessing each IOS is to use a table of IOS/DPM pointers and a data type which reflects the
organization of the IOS/DPM memory space. Such a table eliminates the need to generate
these pointers in real time. Given that some irregularity in the way address bits may be
used, such a table is the only timely way of obtaining this information. Finally, some low
level IOS operations will be implemented as subprograms which are useful not only for
initialization but later dunng real time operation.

75

3.2.1.1 Process Name: IOS Data Types

Inputs: Not Applicable
. Outputs: Not Applicable

Requirements I/O Network Functional Requirements, Section 2.3.1;

Reference: IOS Specifications, Appendix C

Notes: The main purpose of this "process” is to prdvide type
templates for the easy manipulation of IOS registers and dual
ported memory.

Description:

This process is responsible for defining the software representation of 10S hardware
registers and type definitions for input/output data for node transactions which are stored in
the IOS DPM. The IOS specification lists seventeen registers which are accessible by the
IOP directly or which can be accessed by means of an IOS program. Of these, three are
not currently needed to correctly and fully use the IOS for network communications. These
are three registers belonging to the High Level Data Link Communications (HDLC) device:
the HDLC Address Register, the HDLC Receive Holding Register, and the HDLC
Transmit Holding Register. The Address Register contains the address that the device
would use for comparison if on-chip address recognition were being used. On-chip
address comparison is not being used, hence this register is not mapped into software.
‘Similarly, the HDLC Transmit and Receive Holding Registers are not used directly since
the I0S has programmed instructions for transmission and reception of data. Two
registers, the Solicited Chain Pointer and the Unsolicited Chain Pointer, are sixteen bit
registers whose type is defined in IOS Access Types. The remaining eight bit register
types are defined and bit for bit specified here. They are the Chain Status Register, the
Interface Command Register, the Interface Status Register, the Timer Limit Register, the
Poll Address Register, the Poll-2 Register, the Time Register, the three HDLC Control
Registers, the HDLC Interrupt Register, and the HDLC Status Register. Memorandum
AIPS-86-32R in Appendix C gives the full specification of these registers. These register
types will be represented as bit mapped records. A field of the record which is only one bit
wide will be represented by a Boolean type. A field requiring more than one bit will be
represented by a specific type corresponding to that field.

This process will also generate byte wide templates for register values which wili be
needed at run time. Generating specific bit patterns on most microprocessors is a labor
intensive operation, requiring many machine instructions. Having frequently used
templates available will improve performance and readability of the code. The following
list is not exhaustive but indicates some of the templates that are needed.

76

template register

Disable_Timer Timer Limit Register
IOS_Poll_Addr (derived Poll Address Register

from the GPC Address)

Disable_HDLC HDLC Control Register #1
Set_Auto_Flag_Mode HDLC Control Register #2
Clear_Auto_Flag_Mode HDLC Control Register #2
Prime_IOS - Interface Command Register
Stop_IOS : Interface Command Register
Execute_With_Poll Interface Command Register
Execute_Without_Poll Interface Command Register
Clear_Chain_Status , Chain_Status_Register

Finally, this process will specify record types for input and output data used by the
network manager and test processes. These include a Chain Status Record for garnering
performance data about a given chain. This is data that is stored away by the IOS during
chain execution which can be used for future analysis. Also specified here are the Node
Input Record, with fields for the five bytes of data the IOS stores for every receive input
instruction it executes as well as the data from the node itself, and the Node Output Record,
with a byte count field, a data field, and a field for transmission status as recorded by the
HDLC device. The record for test data will be a compound record based on node input
and output records as needed for the IOS test process. Finally, a record describing
unsolicited input will be defined here. Unsolicited input on an I/O Network is an error
condition. This type is provided to support detection of this error by other processes.

77

3.2.1.2 Process Name: IOS Instructions and Programs

Inputs: Not Applicable

Outputs: Not Applicable

Requirements I/O Network Functional Requirements, Section 2.3.1;
Reference: IOS Specification, Appendix C

Notes: -

Description:

This process is responsible for defining the software representation of IOS instructions and
for specifying types which can be used as IOS program templates. In order to conduct
communications on an I/O network, the IOS follows a program which has been previously
stored for that purpose in the IOS/DPM.

The program consists of an ordered set of instructions. The format of the instructions is
very specific and is described in detail in Appendix C. However, loading these instructions
into memory is under software control. For many applications, as long as a compiler uses
type templates in a consistent manner, the internal organization of RAM is not of general
interest. However, the correct bit for bit layout of IOS programs is crucial to the correct
operation of the IOS. Hence the internal organization IOS/DPM memory is different from
other RAM memories. The template used to control the internal organization of this
memory must be carefully spelled out for the compiler. For example, all IOS instructions
must begin on an even numbered address, i.e. a word boundary.

78

OPCODE | OPERAND ADDRESS

32 2423 16 15 0
opcodes: nop
output

unsolicited_input
solicited_input
move_immediate

move
branch

opérand: 8 bit address of
IOS Register

Figure 16. IOS Instruction Format

~ There are seven basic IOS instructions: NOP, BRANCH, SOLICITED INPUT,

UNSOLICITED INPUT, OUTPUT, MOVE, and MOVE IMMEDIATE. The format of
these instructions is shown in Figure 16. Of these, only the NOP instruction requires no
operands. The next four instructions require a single word (16 bit) operand. The three
instructions dealing with input/output operations require the address of the data used by the
instruction . The BRANCH instruction requires the address of the next instruction. The
move operations have the most complex instruction formats. In addition to the sixteen bit
address of the location to which the data will be moved, they also require the byte long (
eight bit) address of the location whose contents are being moved or the absolute
(immediate) value which is to be moved. In the case of the MOVE instruction, only byte
long addresses can be moved. While this includes all readable registers, it does limit the
general versatility of this instruction. Hence, only register contents are moved this way.

To simplify use of these instructions and to generate readable code, a set of mnemonically
named constant instructions are defined in this process. Other processes can then use these
constants as necessary. This method is also more efficient in that no CPU time be given
over to assembling these templates at run time. However, this is not a major feature now
since all IOS programs are loaded into the DPM during initialization. If later modifications
require run time loading of IOS programs, this feature will become a time saving payoff.

Two types of constant instructions are defined, those using MOVE and those using MOVE
IMMEDIATE. The MOVE instructions are defined as short instructions and specify a

79

particular register to be moved. It is assumed that the destination address will vary and
therefore will be added at initialization time. Thus these short instructions are only part of
an instruction, since they require an additional operand for completion. The MOVE
IMMEDIATE instructions are complete instructions which give a constant to be moved and
a destination address. These are used to define frequently used operations. The following
list of these definitions is not comprehensive, but identifies some of these instructions.

short instructions defined as constants
read_csr
‘read_isr
read_sys_time
read_ir
read_sr

full instructions defined as constants
stop_timer
enable_rcvr_only
enable_rcvr_and_xmitter
set_3_res_bits
set_auto_flag
start_chain_with_poll

While individual instructions are important, these instructions must be grouped together to
create useful IOS programs. To this end some program templates are defined in this
process. Other processes can use these program stubs to build larger IOS programs.

The program stubs which are defined here are a chain header, a node transaction, an array
of node transactions, an end of chain program, IOS idle program, and a node chain
program. A complete IOS program consists of a header, a chain of transactions, and an
end of chain routine.

The header is used to store some initial data about the chain such as the time and the initial
value of the HDLC status register and to initialize some IOS registers such as the poll
priority registers and the HDLC receiver. It also contains the instruction which causes the

IOS to poll for use of the network. The chain header ends by branching to the first
transaction stub. '

Each node transaction stub controls the execution of one I/O exchange with a node. It
waits the required bus quiet ti.z= 1 currently 256 microseconds), enables the HDLC auto
flag mode, sends an output frame, enables the timer to detect no response
conditions(currently the timeout value is 512 microseconds) and receives the node
response. Each transaction stub ends with a branch to the next stub. It is this resemblance
to a linked list that spawned the use of the name "chain" for the IOS program.

80

In order to stop the IOS chain execution, an end of chain program is necessary. This stops
the timer, disables the HDLC transmit and receive functions, stores some statistics, and
finally sends the IOS to its idle mode of operation where it executes the I0S idle program.
The last transaction in the chain branches to this end of chain program.

The I0OS idle program is simply a way to have the IOS execute a program using the
unsolicited chain pointer as its program counter (PC) while it waits for a command to
execute a solicited chain. The later uses the solicited chain pointer as its program counter.
This takes advantage of the ability of the IOS to transition smoothly from one PC to the
other. The idle program is simply an infinite loop which executes an untimed unsolicited
input instruction, followed by a branch to this instruction. When a solicited chain is
ready, the transition from one PC to the other is effected by writing to the Interface
Command Register. The end of chain program terminates by writing a command to the
Interface Command Register to change PCs.

Although the DPM consists of random access memory, the program portion is relatively
static. Only the data portion, and then only dynamic data, will be rewritten either by the
IOP (for output packets) or the IOS (for input packets). Thus these programs are loaded
into the DPM at initialization time and do not need major modifications at run time. The
modifications which do need to be made will be discussed further in section 3.2.1.4.

3.2.1.3 Process Name: IOS Access Types

Inputs: I/O Network Identifier
I0S Identifier
Channel Selection
DPM Partition
Relative DPM Address
System Address
Long DPM Address

Outputs: Long DPM Address

System Address
Relative DPM Address

Requirements I/O Network Functional Requirements, Section 2.3.1;
Reference: I0S Specification,Appendix C

81

Notes: ~ The action of this process is necessitated by the way in which
address lines control access to devices in the LMN region of
memory. The IOS is a device in that region.

Description:

This process is responsible for mapping logical entities such as IOS identifiers and I0S
registers into physical address bits. IOS/DPM accesses are made by means of pointers.
The addressing scheme is fairly complicated. This process makes addresses for accessing
specific IOS/DPM pairs readily available so that this type of bit assignment does not need
to be done in real time. '

A good deal of information about the behavior of read/write operations on an IOS/DPM is
encoded in the address used during the read/write access of this device. Figure 17 is
intended to help with this discussion. Each DPM currently has 8K bytes of storage.
Within a DPM, this memory is divided as follows. The first 32 locations are specific 10S
hardware registers. In some cases there is further address decoding based on the value of -
the read/write control line. The remaining 8,160 locations are dual ported RAM. One
unusual aspect of the IOS address space is that the actual address used to access a given
location in dual ported memory depends on the side originating the access. From the IOS
side of the DPM, the locations are accessed by thirteen bit addresses ranging from O to
1FFF16. The FTP is currently based on a Motorola M68010 microprocessor and the
address lines referred to in the following discussion are the M68010 address lines. Figure
17 will help with the following discussion. As one would expect, address lines AQ to A12
are decoded to designate one of these byte wide locations. However, when accessed from
the FTP side, the highest order address bit is not at A12 but rather at A15. Thus, from this
side, the DPM is effectively partitioned into two discontiguous regions. The lower 4K
bytes, including the IOS registers, are accessible when A1S5 has a value of zero; the upper
4K bytes are accessible when A1S5 has a value of one; decoding A0 to A11 selects one byte
within a given 4K region. To make use of this feature, the DPM has been divided into two
functional regions as well. The lower 4K are used to hold programs and data for the I/O
Network Manager while the upper 4K are used by the /O Communications Manager for
user programs and data. Care must be taken when converting FTP addresses for use by
the IOS that the value of A1S5 is transferred to A12. This conversion is handled by a
function which takes a Long DPM Address and returns a Relative DPM Address for use in
the IOS programs which are stored in the DPM. This function copies the lower twelve bits
of the Long DPM Address to the lower twelve bits of a sixteen bit word. It then copies
A1S5 from the Long DPM Address to bit 13 of the word. Finally, it zeroes the upper three
bits of the word thus forming an address which occupies two bytes and can be used as an
operand in IOS instructions which require an address.

82

10S Select ABC Select

] | | 1

L2522 2t 20 | 1o 18 17 16 | 151413592 | 1110 98 | 7635 4 | 3210 |

ety E? (= f =]

Region Poripl.ul I
Seloct LMN Select Rddress within 10S

Figure 17. FTP Address Lines

From the FTP side, the remaining eleven address lines, A23 to A16 and A14 to A12, must
be decoded to select a particular IOS or set of IOSs. The function of address lines A23 and
A22 are very straight forward. When A23 has a value of one, the shared bus is selected.
When A22 has a value of zero the LMN region of the shared bus is selected. Since the IOS

is part of the LMN region of the shared bus, pointers to an IOS/DPM must conform to this
bit usage.

Within the LMN region, the address space of each FTP channel can support 24 10S, as
shown in Figure 18. Selecting one of these 24 I0Ss is controlled by address lines A21 to
A16. A21 to A19 are the peripheral select bits and they can take on any value from zero to
seven. A18 to A16 are the LMN bits and for an IOS exactly one of these bits must have a
value of one; the other two must be zero. Finally A14 to A12 are the ABC channel
selection bits. While the value of A23 to A16 select a particular IOS within each FTP
channel, the FTP channel or channels which will actually transfer data to its attached IOS
is determined by the ABC bits. To select a channel, the bit corresponding to that channel is
set. At least one of these bits must be set, but more than one can also be set. When one bit
is set, only that channel's selected IOS is accessed. When two or more ABC bits are set,
the selected IOS in each designated channel is accessed simultaneously within its respective
channel. While the address space itself will support twenty-four I0Ss, the backplane is

presently capable of containing only two IOS boards. These will both reside in the L
region.

83

0000 Hardware Control 841000
(3 and _Smtus t
1F Registers 84101F
0020 841020
Network Manager
10S Programs
and Data
3%
A =1 .
= Address opFR B41FFF Address
108 1 [105 I0S Bus 1000 » 849000‘ FTP Bus
— r' s b
B =
E AYBIicalion Users
= S Programs
E and Data
C =
Triplex FTP v . v
1FFF| 849FFF

Figure 18. I0S/DPM Functional Memory Map

The ability to access corresponding IOSs in different FTP channels simultaneously can
afford some performance gains when working with networks with multiple root links. For
reliability considerations, these root links are always connected to different channels.
Furthermore, within their respective channels these root links are assigned to
corresponding IOSs (see Appendix B, Network Operating Rules). Although each I0S
operates independently, all the IOSs to a given network contain exactly the same set of
programs and outgoing data. Although only one IOS to a network is active at any given
time, the inactive or spare IOSs must be ready to take over network operation in the case of
a failure of the active IOS. But only the active I0S holds valid incoming data after
executing a chain of network transactions. Therefore, when writing data or programs for a
given network, all its IOSs are written to simultaneously. When reading data from a given
network, only the active IOS is read. :

To support the features described above, read and write operations for the IOS will use
distinct pointers with the proper functionality encoded in the ABC selection field. If the bit
is set, data is transferred. Therefore, pointers used for writing data to an IOS/DPM will
have the bits set which correspond to all its root links. Only one write pointer value needs
to be generated. Pointers used to read data from an IOS/DPM have exactly one of the
ABC bits set. Thus, a read pointer for each root link in a network needs to be calculated.

IOSs are simplex devices which do not contain source congruent data. The issue of source
congruency of inputs and voting of outputs in order to mask errors needs some discussion.
When reading a given IOS, it is necessary to distribute the value read to all the FTP
channels by means of a data exchange in order to maintain source congruent data in all

84

FTP channels. The channel whose IOS will be read has the corresponding ABC bit set.
The actual distribution of the data to the various FTP channels is controlled by the LMN
data exchange default registers, which have previously been set up to perform a self to all
exchange. This is an implicit data exchange which does not require explicit use of the
transmit or receive data exchange registers. When writing data to the I0S, the value written
must be a voted value to avoid transferring bad data from one FTP channel to the network.
Voted values mask any errors from one channel. Since there is not an analogous implicit
data exchange mechanism available for write operations, writing a voted copy of data to the
IOS requires explicit use of the data exchange registers. This will be discussed in Section
3.2.1.5.

To represent all this functionality in software, a data type called Long DPM Address is
specified by this process. This type provides a bit for bit template of the IOS address
fields. Values generated from this template are then stored in a table which has separate
read and write entries for all the root links to the various networks connected to a given
GPC. This table will be described in more detail below.

The type Long DPM Address is represented as a record with each set of address lines
mapped to a specific field of the record. The fields of the record are: Bus, IOS,
DPM_Half, Channel, DPM_Address. The Bus field(two bits) is assigned a constant value
of 102, which designates the shared bus as described above. The six bit IOS field is used to
select one of twenty-four I0Ss. To ensure that the IOS select field has a valid value, an
enumerated type is defined for this field with twenty-four possible literals. Each
enumeration literal within the type is then assigned a specific two digit octal value which
will decode as one IOS selection. To facilitate their use, these literals in turn are mapped to
the twenty-four valued logical IOS identifier type. For the present system, only two of
these twenty-four literals will actually map to physical IOS boards: 04g and 14g. The low
order octal digit, 4, indicates that both IOSs are in the L region of the shared bus. The
upper or lower 4K of the DPM is represented as a bit wide Boolean valued field. Each
ABC bit is an element in a packed Boolean valued array. The array is indexed by the type
representing the logical identifier of the channel. The DPM_Address field is the eleven bit
address of one byte within a 4K DPM region.

During initialization, a table of DPM addresses is generated. Each network to which a
GPC is connected has an entry in this table. Each entry consists of two write address
values, one for each half of the DPM and two times R read address values, where R is the
number of root links to the network from the GPC. The write addresses are designed to
take advantage of the fact that root links to a given network must alwavs ~ome from
corresponding IOS selections in each channel and that there is at most one root link to a
network from a given channel as described above. Thus, it is possible to write programs
and data to all IOSs (i.e. root links) of a given network simultaneously. The read
addresses allow congruent copies of data from the active IOS in a network to be distributed
to all FTP channels implicitly, without the overhead of an explicit data exchange.

85

A sample entry in this table is shown below. This network has two root links, one from
channel A and one from channel B. It uses the IOS slot with peripheral select 0 from layer
L. Thus, its IOS select field is 04g. Figure 19 shows a read access memory map of the

IOS in channel A.
POINTER FUNCTION CHANNEL LOWER DPM UPPER DPM
ADDRESS ADDRESS
Read Access A 841000 849000
Read Access B 842000 84A000
Write Access All 843000 84B000

Figure 19. 10S Read Access Memory Map

86

3.2.1.4 Process Name: IOS Dual Ported Memory Usage

Inputs: DPM Pointer

Long DPM Address

1/O Network Identifier

Channel Number
Outputs: Initialized IOS/DPM for Network Manager
Requirements I/O Network Functional Requirements, Section 2.3.1;
Reference: IOS Specification, Appendix C :
Notes: None
Description:

This process is responsible for initializing the IOS/DPM for the network manager. A logical
organization of the IOS/DPM is superimposed on the physical memory space by defining a
record type, DPM_Record. A variable which is an access type to this record can be
assigned the base address of a specific dual ported memory. This base address can be
obtained from the table described in section 3.2.1.3.

The DPM_Record will have a specific field for each IOS control and status registers. Other
fields are defined to contain the following programs: a test program for the IOS, a status
collection program, a node reconfiguration program, an end of chain program, and an
idling program. Finally, the following fields are defined to hold data : chain status data,
data for the IOS test program, input/output data for the node status collection and node
reconfiguration programs, and a data field to trap unsolicited input. Usin g this record will
make logical, rather than absolute, references to fields of the IOS/DPM possible.
Furthermore, if the language supports the ability to obtain an address of a given field of a
record, this address can be processed to generate the corresponding address needed by the
IOS. For example, the thirty-two bit address used by the FTP to access a node output
packet can be converted to the sixteen bit address used as an operand by the IOS send
instruction, thus automating and simplifying the software needed to generate 10S
programs. :

This process will provide subprograms to initialize the IOS/DPMs which are coanected to
the host GPC. There are four steps in the initialization of an IOS for the I/O Network
Manager. The four steps are: 10S related hardware initialization, writing the IOS programs
to the DPM, writing static output packets for node status collection to the DPM, and
writing static output packets and clearing memory to hold input packets for the IOS test
program. Each of these will be considered in turn.

87

Hardware Initializati

The IOS hardware is initialized by writing to specific control registers. Values are written
to accomplish the following: stop and prime the IOS by writing to the Interface Command
Register(ICR), zero all non-register DPM memory, zero the Solicited Chain Pointer(SCR),
write the starting address of the idling program to the Unsolicited Chain Pointer (UCR),
disable the timer by writing to the Timer Limit Register(TLR), set the value of Poll
Register 1 to the IOS_Poll_Address, disable the autoflag mode of the HDLC by writing to
the HDLC Control Register #2 (CR2), disable both transmission and reception by the
HDLC by writing to the HDLC Control Register 1 (CR1). The initialization of the
hardware registers is performed simultaneously on all IOSs connecting this GPC to the
network. The subprogram performing this initialization is passed the pointer of the IOS or
set of IOS to be initialized. If there is a channel failure and recovery later in the lifetime of

the system, the pointer value passed to this routine will allow it to reinitialize only one
channel.

05 Programs

The DPM holds four programs for use by the I/O Network Manager and one test program
executed at power on. These programs are the end of chain program, the idling program,
the node chain programs, and the IOS test program. The end of chain program stops the
timer, disables transmission and reception by the HDLC, saves the value of the time byte
and the Chain Status Register (CSR) in the Chain Status data area, and writes a command
to the ICR indicating that an unsolicited chain should be executed. This causes the IOS to
begin executing instructions from the UCP which is pointing at the idling program. It also
causes the Chain Complete bit in the CSR to be set.

The idling program starts an unsolicited input instruction, pointing at the buffer used to
trap unsolicited input and then branches to itself. During this program the IOS is waiting
for unsolicited input which should of course never come. It really is idling, waiting for the
command to execute a solicited chain.

Each node chain program starts with a header and is followed by a linked list of
transactions. The header has instructions which save the value of the time, the HDLC
Interrupt Register (IR), and the HDLC Status Register (SR) in the Chain Status data area.
The header then has instructions to write to CR3 commanding the HDLC to use (and
expect) three residue bits per HDLC frame, to set the poll priority far this chain (manager
chains are given the highest priority), to start a chain with a poll by writing to the ICR
(This is the default value; the status collection chain always starts with a poll, but the
reconfiguration chain may not.), and then branching to the first transaction in the chain.

88

|

Each node transaction executes the same series of instructions. First the HDLC is
commanded to disable reception and transmission. Then the TLR is programmed to go off
in 256 microseconds followed by a solicited input instruction with the address of the
unsolicited input buffer. The effect of this combination of instructions is to produce a delay
of 256 microseconds. The network nodes need this much "quiet" time on the serial bus
between transactions for proper operation. Then the TLR is disabled. Next the HDLC is
commanded via CR2 to enable auto flag and via CR1 to enable its transmitter. Next a send
instruction is given with the address of the output packet belonging to this transaction as an
operand. A no_op instruction is required by the 10S following each send instruction.
Autoflag is then disabled (by writing to CR2) and the HDLC receiver is enabled while the
transmitter is disabled (by writing to CR1). Next the value of IR is copied to the
transmission status field of the output packet for this transaction for later processing. The
TLR is set to go off in 512 microseconds followed by a receive instruction whose operand
is the address of the input record associated with this transaction. The last instruction in a
transaction program is a branch instruction to the next transaction in the chain or to the end
of chain program.

The last program to be initialized is the IOS test program. The purpose of the test program
is to verify the proper operation of the IOS and its attached root node. It consists of a
header and two node transactions. It will be discussed in more detail in section 3.2.3.2.

The initialization of the IOS programs is performed simultaneously on all IOSs éonnecting
this GPC to the network. The subprogram performing this initialization is passed the
pointer of the IOS or set of IOSs to be initialized. If there is a channel failure and recovery

later in the lifetime of the system, the pointer value passed to this routine will allow it to
reinitialize only one channel.

Static Qugpur Packets for Node Starus Collecti

Collecting status from network nodes is a periodic function. While there may be occasion
to deselect some of these transactions due to the failure of a node, the chain of transactions
used to collect node status is essentially static. To deselect a transaction from the chain, the
operand of the branch instruction which preceded the transaction in the list is modified to
point to the next transaction. This modification affects the program but not the data
associated with the transaction. In the status collection chain, each node in the network is
sent a command asking it to send back the contents of its status registers. Then a response
is awaited and,in the absence of faults, received under the direction of the program. This
command sent to the node never needs to be changed. Hence the output packets containing
the node command can be' written once at initialization time and never written again. In
contrast to this chain, the node reconfiguration chain has data packets which change each
time the chain is executed. Hence, theses output packets are not initialized except for the
byte count field. This field is always a fixed number for all node output packets and
writing it once at initialization does afford a small performance gain.

89

The initialization of the output packets for the node status collection chain is performed
simultaneously on all IOSs connecting this GPC to the network. The subprogram
performing this initialization is passed the pointer of the IOS or set of IOSs to be initialized.
It also needs the network identifier of the network whose I0Ss are being initialized so as to
be able to obtain information about the addresses of the nodes in the network. If thereis a
channel failure and recovery later in the lifetime of the system, the pointer value passed to
this routine will allow it to reinitialize only one channel.

r T rogr

The IOS test program also sends output packets, but only to the root node. Since this test is
only performed once at power on or system restart, its output packets are also static and
only need to be written once to the DPM. These output packets are directed to the root node
connected to each I0S.The test input records, like all node input records, contain the node
responses to the commands in the test output packets as well as status information about the
transaction which the IOS appends. Since this test is run at startup, these records can be
initialized here to a bit pattern which will be written over by the IOS when a valid node
response comes in.

Unlike the other data and programs described thus far, the data in the test output packets is
not identical in every IOS which connects this GPC with a given network. This is because
the output packets in the test program go to the root node only, and the root node from each
IOS has a unique address on the network. Thus, when writing all the programs and the
data for the node status collection chain, the DPM pointer which is used is the one which
allows simultaneous writing to all the IOS/DPMs connected to the network. The
subprogram which initializes the IOS test data packets needs to be passed the network
identifier and the channel number of the IOS which is being initialized.

90

3.2.1.5 Process Name: IOS Low Level Utilities

Inputs: Byte Pointer
Byte Count
HDLC Status Register
Initial Poll Priority
Interface Command Register
Unvoted Byte

_ Outputs: Valid Checksum Boolean

Residue Bit Count
IOS Instruction
Interface Status Register

Voted Byte
Requirements I/O Network Functional Requirements, Section 2.3.1;
Reference: Node Specification, Appendix D
Notes: None.

Descnptlon.

This process is responsible for providing users with some low level utility routines which

hide the complexity and detail associated with such routines. Five routines are provided.
They perform checksum verification, residue bit calculation, specialized IOS instruction

generation, regxster type conversion, and voting output data. Each will be discussed in turn
below.

Each input packet received by the IOS from a node has a checksum appended by the node.
A valid checksum has the following characteristic: when it is added to the sum of the
HDLC address, control fields and data fields in the packet the final sum modulo 256 is
zero. This serially transmitted data is copied by the IOS into contiguous locations in the
DPM. When the data is copied to onboard FTP memory, the data mapping is left intact. A
routine, Valid_Checksum, will return a boolean value of true if the input packet from the
node passes the above test and a boolean value of false otherwise. Since the data over
which the checksum is computed is located in contiguous memory, only the address of the
input packet and the number of bytes in the packet need to be passed as parameters to this
general purpose routine. Tc¢ 2void use of the mod operation which may require a time
consuming divide operation, each partial sum is compared to the modulus. If this partial
sum is greater than or equal to the modulus, the modulus value is subtracted from the total.

91

The HDLC protocol used for communication between a node and an IOS requires the
transmission of three additional bits after the data field of each frame. These are called
residual bits. After the reception of a frame, the HDLC Status Register value can be
examined for the number of residual bits transmitted. A subprogram is defined which
processes the Status Register value and returns the number of residual bits transmitted with
an input packet.

When an I/O Network is shared among several GPCs, it is called a regional network.
These GPCs contend for use of the network. The winner of a contention is determined on
the basis of a priority scheme. The priority which decides network access is based in part
on the priority of the message it wishes to send. This is a three bit field of Poll Register 2.
A subprogram is defined which converts the logical message priority into the correct byte
wide value to be written to Poll Register 2. When an IOS cannot win a poll, it will
increment this three bit field prior to engaging in another contention. This dynamic aspect
of message priority is intended to prevent the possible exclusion from the network of a
low priority message; it is completely under the control of the IOS and requires no software
intervention except for the loading of the initial value as an operand in the IOS program.

The Interface Status Register(ISR) and the Interface Command Register (ICR) occupy the
same address in memory. They are selected by means of the value of the read/write control
line. The former is read only and the later is write only. The DPM_Record format does
not allow this type of hardware representation. Since it is referenced more frequently, the
field has been designated as the ICR within the record. From the point of view of the
software, this is a read/write register. To interpret the value read correctly, the bit pattern
within the byte must be evaluated with a proper template. A subprogram which makes this
type conversion is provided by this process.

Within the physical memory of an FTP channel, there may exist a latent fault such that the
value stored in a given location is not congruent with the value stored in the same location
in the other FTP channels. If this channel were the host of the active root link of a network
and the faulty location held the value to be written to the IOS/DPM for transmission on the
network, the faulty value would be stored in the DPM and then be sent on the network with
possible adverse effects for the entire system. To guard against this problem, each byte of
data which is stored in the DPM is first subjected to a bit for bit majority vote among the
FTP channels. This voted value is then written to the DPM. This provides a high degree of
confidence in all output data. The checksum included in all output packets protects against
possible errors in the DPM itself. The checksum is calculated synchronously by each
channel of the FTP on the local copy of the packet, voted across channels, and then written
to the DPM. While the Frame Check Sequence (FCS) which the HDLC appends to
outgoing packets detects bit flips during the transmission of a message, the checksum
guards against errors that exist in the DPM itself. When a message which does not have a
valid checksum or a valid FCS is sent to a node, it is not processed by the node. Thus the
voting of outputs masks faults originating in FTP memory, the FCS detects errors during

92

transmission, and the checksum covers faults which may exist in the IOS/DPM. A
function which takes a byte from memory, subjects it to a bit for bit majority vote by

sending it through the data exchange mechanism, and writes the voted value to the DPM is
provided by this process.

93

3.2.2 Process Name: IOS Initialization

Inputs: Channel Identifier
Outputs: Reinitialized I0S

Initialization of Every IOS
Requirements I/O Network Functional Requirements,
Reference: Section 2.3.1
Notes: None.
Description:

This process is responsible for coordinating the initialization and test of every I0S which is
connected to a GPC. This takes place during system startup. If GPC FDIR determines that
an FTP channel is failed due to a transient fault, it will bring that channel back online. This

process is responsible for reinitializing the IOSs attached to the FTP channel after such a
reconfiguration.

The test and initialization sequence is performed on each network connected to the GPC. It
proceeds as follows:

1) the IOS Simple Response Test is performed (3.2.3.1)
2) the Address Line Test is performed (3.2.3.1)
3) the IOS Registers are initialized (3.2.1.4)

4) the IOS/DPM is loaded with programs and data for the I/O Network Manager
(3.2.1.4)

5) the Correct I0S Operation Test is performed (3.2.3.2)
6) the Interface Status is written to I/O Network Status (3.4.1)

The reinitialization of an IOS is accomplished by means of the following sequence of steps:
1) the IOS Registers are initialized (3.2.1.4)

2) the IOS/DPM is loaded with programs and data for the I/O Network Manager
(3.2.1.4)

3) the I/O Network Manger programs and data are updated (3.2.4.3)

94 O - o

3.2.3 IOS Testing

This process is responsible for determining whether or not the IOS hardware which is
connected to a GPC is functioning properly. The tests cover the operation of the IOS, the
DPM memory, and the root node connected to the IOS. If any faults are detected in this
hardware, the information is logged in the 10S Error Log and the status of the network to
which this IOS belongs is updated by marking the corresponding interface status as
Failed_IOS or Failed_Channel, whichever is appropriate.

3.2.3.1 Process Name: DPM Memory Tests

Inputs: I/O Network Identifier
Channel Number
Starting Address of DPM Memory Block
Ending Address of DPM Memory Block
Network Interface Status
Channel Identifier

Outputs: Network Interface Status
Results of DPM Word Test
Results of DPM Block Test
Results of DPM Memory Tests
Results of Channel OK Test

Requirements I/O Network Functional Requirements, Section 2.3.1;
Reference: IOS Specification, Appendix C

Notes: None.
Description:

This process is responsible for testing the Dual Ported Memory (DPM) associated with
each IOS connected to a GPC. Some of the tests are conducted at system startup and others
are conducted during normal operations.

The three tests conducted at startup verify that the IOS/DPM board is plugged into the
backplane, that the hardware address lines are connected correctly and are fully operational,
and also that the individual memory devices can pass read/write pattern tests. Of those tests
conducted during normal operations, two are used as a diagnostic tool to further isolate the
cause of an error after the error has been detected by other software and one is used as a
routine diagnostic procedure, checking for latent DPM memory faults. The two tests used
to further isolate detected faults determine whether or not a particular FTP channel is still

95

synchronized with the other channels and whether a block of DPM memory has failed such
that it cannot pass a read/write pattern test.

Each of the tests conducted at startup is conducted by a specific subprogram which tests all
the hardware associated with a particular network. However, all the subprograms have
certain operational features in common. One common feature is the use made of FTP
channel status information available from the GPC FDIR process and similar information
obtained from the channel failure detection subprogram provided by this process itself. If
an FTP channel is failed, the memory tests conducted on the IOS/DPMs connected to that
channel will appear to fail. Thus, prior to conducting any memory tests, the FTP channel
status is evaluated. If the channel is failed, the interface status of the IOS is marked
Failed_Channel and this information is logged. Similarly, at the conclusion of any test, if
errors were detected, FTP channel status is again evaluated. If the channel failed during the '
test, thereby resulting in a false diagnosis of the cause of the error, the interface status is
updated to reflect the true cause of the error and this information is logged. Another
common feature among the three startup memory tests is the way in which pointers are
used to access the DPM. Whenever values need to be written to the DPM, a pointer value
accessing all the DPMs connected to the network is used. However, whenever values need
to be read from the DPM, a pointer value accessing only one DPM is used. These pointer
values are obtained from the IOS/DPM Memory process. To expedite the testing process,
the cumulative result of these tests is passed as a parameter to each subprogram. Thus, if a
DPM has failed a previous test, the current test will not be conducted. For example, a
DPM which has failed the address line test will have its status marked Failed_IOS and
therefore the read/write pattern test for that DPM will not be conducted. Similarly,
whenever a test detects a fault, the test underway is deemed complete; further testing for
that particular fault condition is not necessary. The purpose of the tests is to closely
identify a fault for maintenance purposes, but not to provide a comprehensive diagnosis of
the nature of the fault. For example, the test will diagnose a failed DPM memory device,
but it will not identify all the memory locations in the device which may have failed.

The first of the startup DPM memory tests is used to verify the presence of the IOS/DPM
board in the backplane. Using a pointer which accesses all the IOSs in the network whose
identifier is passed as an input parameter, this test writes a pattern to the solicited chain
pointer of the IOS. The values are then read back one at a time using a read access pointer.
If the pattern read does not match the pattern written, the IOS is deemed unreachable by the
FTP. The error is logged, and the interface status of the IOS is marked Failed_IOS. If the
pattern does match, no log entries are made and the interface status is not changed.

The second startup DPM memory test determines if the address lines to the IOS/DPM are
wired correctly. The test is only performed if at least one of the IOSs belonging to the
network whose identifier is passed as an input parameter still has an idle, i.e. non-failed,
interface status. The interface status is passed as an input/output parameter. Using the
write access pointer obtained from the IOS/DPM Memory process, a value based on the

96

lower twelve bits of the address of each location is written to the DPM. This pattern is then
read back on a channel by channel basis and verified. The test is then repeated using a
pattern in which the upper and lower bytes of the previous pattern are inverted. This
switch is necessary since certain address line errors would not be detected otherwise. Each
of the lower twelve address lines decodes as one DPM location which can only hold eight
bits of information. Thus, after the pattern has been written, some locations will contain
the same bit pattern. The first pass uncovers errors in the lower eight address lines and the
second pass in the upper four address lines. Errors in higher order address, i.e. lines
twenty-four to thirteen, lines will be uncovered by the first pass. If the pattern read does
not match the pattern written, the IOS is deemed to have an address line error. As in the
previous test, the error is logged, and the interface status of the IOS is marked Failed_IOS.
If the pattern does match, no log entries are made and the interface status is not changed.

The last DPM memory test is the read/write pattern test. In this test each IOS connected to
the specified network is tested in turn. A pattern is written to one location and then read
back. If the value read matches the value written, the next location is tested. If an error is
detected, the interface status of this IOS marked Failed_IOS, the information is logged and
the process is repeated with the next IOS/DPM in the network. For completeness, two
patterns need to be used, one being the bitwise complement of the other. This will ensure
that each bit in the memory can hold a value of one and as well as a value of zero.

The first of the two diagnostic tests used to further analyze other test results is the test
which performs a read/write pattern test on a block of DPM memory. In this test the
starting and ending addresses of the block are provided to the subprogram. No checks for
channel failure are performed here. Also, this test is only conducted on one DPM at a time,
the one selected by the starting and ending addresses. This test is used whenever other
fault detection indicators give a positive result but the possibility of a channel failure is
already ruled out. If no errors are detected in the designated block of memory, an

indication that the test was passed is returned to the caller; otherwise an indication that the
test was failed is returned.

The second of these tests is one which is used to detect an FTP channel failure. This test is
accomplished by performing a From_X exchange on the channel under test, where X is A,
B, or C. The From_X exchange causes a value to be written to the transmit register of the
data exchange hardware. While all channels write to their respective transmit registers,
only the copy from channel X is allowed to proceed to the receive registers in each channel.
This exchanged value is then read back from the receive register and compared with the
outgoing value. If the values do not agree, a channel failure is likely and an indication of
this result is returned to the caller of this subprogram. Otherwise, an indication of no
channel failure is returned. For this test to work, the data exchange hardware must be
functioning properly and all channels must be operating synchronously. The purpose of
this test is not to analyze this error since that analysis is the responsibility of GPC FDIR.
Rather, this function provides a quick check as to the state of the FTP channel connected to

97

an IOS. There are two main uses for this test. The first is to detect a channel failure before
an IOS connected to that channel is used to execute chains which access I/O devices on a
network. In the presence of such a failure, another IOS connected to the same network
through a different FTP channel must be used since only the channel directly connected to
the 10S can control the IOS. Detecting this condition early saves time, since such a failure
will always result in the detection of errors in the I/O chain. These errors must then be
processed and the chain repeated. All this unnecessary overhead can be avoided by the use
of this test. The second use of this function is to help in the analysis of the cause of an
error, once that error is detected by other means. Thus, if data read back from a
transaction to a node indicates a checksum error, this fault could be due to the node itself,
to the IOS/DPM memory location in which the checksum was stored, or to the failure of the
FTP at the time the checksum value was read from the DPM to the FTP RAM. (Bit flips
during transmission are screened for earlier in the logic chain and therefore are already
ruled out as a cause.) Use of the two diagnostic tests described so far isolates the problem
to one of these three causes.

The last diagnostic test is provided to allow background testing of the IOS/DPM when time
for such a contingency function is available. Each word in the DPM memory is tested in
turn, a new word with each call to the subprogram which executes the test. The network
identifier and the channel number which uniquely identify the IOS/DPM to be tested are
passed as parameters to this subprogram which conducts a read/write pattern test on the
next location in the DPM memory. If the test fails, this result is logged and an indication of
this result is returned to the caller. If the test is passed, an indication of this result is
returned to the caller.

98

3.2.3.2 Process Name: Tests for Correct IOS Operation

Inputs: I/O Network Identifier

Network Interface Status
Outputs: Network Interface Status
Requirements I/O Network Functional Requirements, Section 2.3.1;
Reference: IOS Specification, Appendix C;

. Node Specification, Appendix D

Notes: None.
Description:

This process is responsible for testing the proper functionality of each root link connected
to a GPC. The root link consists of the IOS and the root node. These tests are conducted at
system startup. The test is conducted by executing a program from the IOS which sends
commands to the root node. The results of the program are then analyzed to determine if
the results indicate a fully operational IOS and root node. The IOS functions which are
tested include its polling capability, mode switching capability, timeout operation, ability to
transmit and receive data, status and control register operation, and its overall capability to
execute a chain, i.e. execute its instructions correctly. The node functions which are tested
in the root node are its ability to disable its root port, to return its status only from an
enabled port, to respond to reconfiguration commands and to reconfigure itself for one
transaction only. '

The test is performed on one IOS in a network at a time. The followin g sequence of events
prepares the IOS for the actual test execution. The ICR is commanded to stop; this is an
effective reset of the IOS. A chain is then executed without conducting a poll which sends
one reconfiguration command to the root node instructing it to disable all its ports. This
chain is intended to isolate the root link from the rest of the network so that potential
problems on the network cannot disrupt the tests. '

The test itself consists of a program which has a header and two node transactions, both
directed to the root node. The header causes a poll to be conducted. The first transaction
commands the node to disable all of its ports. The second transaction commands the root
node to enable-its root port only once, for the response to this command. The program

concludes by moving a command to the ICR to cause a transition from solicited to
unsolicited mode.

99

If the interface status of the IOS under test is still idle (i.e. other tests have not detected any
errors) and GPC FDIR has not detected any faults in the channel to which the IOS is
connected, the test will proceed. The starting address of the test program is written to the
solicited chain pointer and the ICR is commanded to start executing a solicited chain. This
process then waits for the chain to complete; a delay of ten milliseconds is adequate.

After the delay, IOS status registers and the transaction status and data are read and stored
in FTP RAM for further analysis. A second check for the health of the FTP channel is
made. If the channel connected to the IOS failed during the test, no further analysis is
performed and the interface status is marked Failed_Channel. Otherwise, the analysis
proceeds starting with the IOS status registers, followed by the transaction status and
finally the data returned by the root node. The IOS status registers are scanned to see if any
errors were detected which would result in the interface status of the IOS being marked
Failed_IOS. When an error is detected, it is logged to the Network Error Log and the rest
of the analysis is not performed. First, the value of the CSR is analyzed. The chain
complete bit should be set. If it is not, the IOS is marked Failed_IOS since this error
implies either an IOS which cannot switch modes (from solicited to unsolicited), a problem
with the TLR in aborting a solicited input command which has timed out, or a root node
which cannot be disabled and is allowing a coherent babbler to be heard by the IOS. The
~ other fields of the CSR should hold their reset values. The ISR is examined to detect a
stuck on high condition of the network bus, another Failed_IOS condition. The value of
the CSR prior to the mode switch is called the final CSR. It also has error detection
information. Its value should reflect: network possession by this GPC, no possession
" default (a poll detected during this chain execution), no data transmission faults (an
incoming message detected during a message transmission) and no poll transmission faults
(data transmission detected during the conduct of the poll). Errors detected herc result in
the network interface status being marked Failed _IOS.

After analyzmg the IOS status registers, status and data from the two node transactions are
analyzed. The status is appended by the IOS when the solicited input instruction is
executed; the data is the message returned by the node. The first test transaction
commanded the node to disable all its ports. Thus, no reply to this transaction should have
been received. The instructions controlling this transaction programmed the TLR to move
to the next instruction if no input is received within 512 microseconds. Proper execution
of the solicited input instruction involves zeroing the byte count field of the transaction
status. A non-zero value is written to this field as part of the IOS/DPM initialization. A
delay of approximately 512 microseconds (measured by reading and saving the time
register immediately before and after the solicited input instruction) and a zero byte count is
evidence that these 1O operations are functioning properly. Also the status of the HDLC

device is stored after the outgoing message is transmitted. It should indicate no
transmission errors were detected.

100

The second test transaction commands the node to enable its root port for its response to
this transaction only. (The node is left with all ports disabled until the network manager
begins execution.) Each status field is analyzed for error indicators. The HDLC SR
should indicate no transmission errors after sending the node command. The byte count
field should have a value of OFjs. The HDLC IR should indicate no HDLC protocol
errors were detected while receiving the node response. The HDLC SR should indicate
that the message from the node had three residual bits. The checksum is validated by

calling a subprogram from IOS Utilities. Finally, the address transmitted by the root node
is verified as being correct.

101

3.2.4 I0S Utilities For I/O Network Managers

I/O Network Managers have two basic objectives when communicating with the nodes in
the network: status collection and reconfiguration. During status collection, each node in
the network is commanded to send back the data which has been stored in the node's status
registers. Reconfiguration is the process by which a node is given the particular port
enable pattern it must maintain until the next reconfiguration command is received. In
order to achieve these objectives, the I/O Network Manager must have access to the
services of the IOS since both status collection and reconfiguration are accomplished by
means of IOS programs, also referred to as chains. This process provides the I/O Network
Manager with the capability to execute and manage chains on an I/O network. It provides
this service through a simple interface which conceals all of the details of the IOS hardware
interface from the Network Manager.

Status collection is the primary means by which a Network Manager determines whether
or not any faults are present in the network. Although the data returned by the nodes is
useful in the analysis of errors, the absence of an expected response and the condition of
the bus itself are also very useful diagnostic tools. Collecting node status, i.e. eliciting a
response from each non-failed node in the network, is accomplished by means of a status
collection program or chain. This chain does not change unless a node failure is detected.
The chain is fixed or static in two ways. The program executed by the IOS when running
the chain does not change and the data sent to each node during the chain execution does
not change. When a node is failed, it is no longer queried for its status. A failed node is
isolated from the network, hence it will not even receive the command asking for its status.
Therefore, the transaction which was initially sent to the node is removed from the chain.
This process is called transaction deselection and is accomplished by modifying the status
collection program. Similarly, if a node is brought back on line, the transaction which
collects its status is returned to the status collection chain or selected again. To support
status collection, this process provides the Network Manager with the ability to run a status
collection chain, to select a status transaction, to deselect a status transaction, and to update
a status chain in the IOS of a recovered FTP channel.

Reconfiguration chains are not static because the number of transactions in the chain varies
with the type of reconfiguration the manager is trying to effect. Furthermore, the data sent
to the nodes which are being reconfigured is intrinsically dynamic: the configuration of
cach node is determined as a network is grown or repaired and is not known a priori. This
process provides the Network Manager with the capability to execute reconfiguration
chains where both the number of transactions and the data sent to each node is specified by
the manager at the time the service is called. -

While carrying out its principle function of sending and receiving data, the IOS is designed
to detect various error conditions on the network. Some detectable error conditions
concern the network as a whole, some concern the IOS, and some concern the individual

102

node transactions. Whenever a chain is executed for an I/O Network Manager, this
information will be analyzed to the extent possible. This analysis in turn is returned to the

Network Manager who uses it as the basis of further analysis and of its reconfiguration
strategy.

In general, if this process detects an error when executing chains for the Network Manager,
it will log the error and any pertinent error information in the I/O Network Error Log.
However, the Network Manager may execute chains containing transactions intended to
produce an error symptom. Thus, this process will give the Network Manager the option of
conducting chains without logging detected errors. Finally, this process will provide the
Network Manager a means of testing the network for the presence of a babbler without
having to execute either a status collection or reconfiguration chain.

103

3.2.4.1 Process Name: Execution of Node Reconfiguration Chains

Inputs: I/O Network Identifier
' Active Root Link
Configuration Commands
Contention Option
Logging Enable
Outputs: Configuration Report
Requirements I/O Network Functional Requirements,
Reference: Section 2.3.1, 2.4.2
Notes: None.
Description:

This process is responsible for executing chains for the Network Manager of the network
specified by the I/O Network Identifier. It is assumed that the purpose of these chains is to

reconfigure the network, however, the Network Manager may use this process to conduct"

I/O transactions for any purpose it deems necessary. These chains differ from other I/O
chains in the system in two respects: the number of transactions in the chain is not constant
and the chain may not always be conducted with contention. The number of transactions in
the chain depends upon the type of reconfiguration the Network Manager is trying to effect.
For example, if the root node is being reconfigured, only one transaction will be in the
chain. If a link between two nodes is being enabled, then two transactions will be in the
chain. The number of transactions is bounded only by the number of nodes in the
network. The Network Manager has the option of running chains either with or without
contention for the network. In general, contention is used even for chains run on local or
dedicated networks, where contention for the use of the network is not necessary, since
some valuable diagnostic information about the state of the network can be obtained in this
way. However, when certain fault conditions are present in the network, it may not be
possible to win a contention. Thus, to force the chain to be executed, the Network Manager
can request that the chain be executed without contention. This process is responsible for
‘conducting the chain as specified by the Manager in the Contention Option.

In order to invoke this process, the Network Manager must supply an ordered list of
commands to be sent to nodes in the network. These Configuration Commands contain
data in the proper format which is to be sent to the nodes as part of this chain.

This process is divided into two main functions: chain execution and error analysis. The

result of the error analysis is returned to the Network Manager as a Configuration Report.
The Configuration Report informs the Manager about the outcome of the attempt to execute

104

this chain. The report takes the form of a discriminated record. One field of the record
indicates whether or not an interface failure was detected when executing this chain, and if
there has been, whether it is due to a failed FTP channel or failed IOS hardware. When no
interface failure is detected, another field indicates whether or not a babbler has been
detected during the execution of this chain, and if there has been, whether not it was
detected during contention for the network or during data transmission. When neither a
failed interface nor a babbler is detected, the last field contains status and data resulting
from the conduct of each transaction in the chain. The status information states whether or
not any communication protocol errors were detected during this transaction. When no
errors are detected, the data returned by the node is also returned to the Network Manager.

Chain execution begins by checking with GPC FDIR as to the status of the FTP channel to
which the Active Root Link is connected. If the channel is okay, chain execution will
continue, otherwise the report returned to the Manager indicates a channel failure.

Next, the program which will execute this chain is tailored to meet the requirements of this
chain as specified by the Network Manager. It is by this means that the Manager's
perogatives over contention and the number of transactions are implemented. First, the
IOS instruction which controls the type of contention used for this chain is generated. If
the Contention Option asks for no contention, the instruction will simply be given a value
of No-op. If the Contention Option indicates contention is required and the network is
local (i.e. dedicated to use by one GPC), an instruction is generated which moves a
command to the ICR to cause a poll to start immediately. In the case where a network is

. regional and contention is required, the command indicates a normal pollin g sequence is to

be used. Different polling sequences are used because the immediate poll takes less time to
complete than a full polling sequence. Polls are conducted on local networks for error
detection only and therefore a performance gain is obtained by using the immediate poll.
However, on regional networks the full contention protocol must be followed since the poll
also determines which GPC will have control of the I/O network. The second step in

- tailoring the program is to write the address of the end of chain program to the operand

field of the branch instruction of the last transaction in this chain. The original value of the
operand field is saved so that it can be restored after the chain is complete. In this way, the
number of transactions in the chain can be varied from a rmmmum of one to a maximum
equal to the number of nodes in the network.

Next, the input and output records for this chain are initialized. The output records receive
the voted value of the commands as given by the Network Manager. A non-zero bit pattern
is written to the fields of the input record.

To cause the IOS to execute the chain, the address of this chain is written to the Solicited
Chain Pointer and the command to start the chain is written to the ICR. This process then
waits for a specified amount of time before proceeding. The amount of time depends on
the number of transactions in the chain. Presently, the value of the timeout is one

105

millisecond per transaction plus one additional millisecond for miscellaneous overhead
(such as the time to complete a contention). The wait may be accomplished as a busy wait
or as a request to the operating system to suspend this process. The busy wait alternative
should be chosen when the value of the timeout is close to the amount of time required to
perform a process switch. In this case, the system does not perform useful work while this
process is suspended; however, chain completion will be detected immediately thus
providing the manager with a performance gain. The final step in chain execution is to read
the data and status information produced by the chain from the IOS/DPM into local FTP
memory using the implicit data exchange mechanism of the LMN region to maintain source
congruency in all channels.

The second part of this process is error analysis. This begins by verifying that the channel
connected to the IOS conducting this chain has not failed during chain execution. There are
two parts to this diagnostic procedure: a data exchange pattern test and a call to GPC FDIR.
Since GPC FDIR is a periodic process, a small amount of time may elapse between the
failure of a channel and its detection by FDIR. The data exchange pattern test is used to
detect a failed channel which GPC FDIR has not yet uncovered. If the channel with the
active root link has failed, non-failed channels will obtain invalid data from its IOS/DPM.
This data should not be processed since it could result in erroneous conclusions about the
network. Similarly, if the channel failed after the last check with GPC FDIR (before the
chain data was loaded into the DPM) but the failed channel has been resynchronized by
GPC FDIR, then the data exchange pattern test will show no errors but again the chain data
should not be processed since it may be invalid. To prevent this situation from occurring, a
call is made to GPC FDIR. When a channel has failed and then been restored, GPC FDIR .
will not report its status as okay until it has undergone a trial period in a resynchronized
state. This period is much longer than the longest chain delay. This means that errors
resulting from a channel which failed before voted data was written to the DPM and which
is now functionally resynchronized are still correctly attributed to the failed channel. The
way in which checks are performed on the status of the channel which interfaces to the
active IOS creates a window of time during which it is possible to determine whether or not
the channel has failed. This test is important because use of invalid data could result in
erroneous conclusions being drawn about failures in the network. Thus, this process is
protected from using invalid data due to a failed channel. If the channel is okay, the error
analysis will proceed, otherwise a log entry is made and a report indicating a failed channel
is returned to the Network Manager.

The need to have this window of time during which a channel failure is known not to have
occurred also drives the sequence of steps followed in reading and analyzing the data from
the IOS/DPM. Thus all the data is read from the IOS/DPM before error processing is
started, rather than a sequence where part of the data is read and analyzed and if no errors
are detected, more data is read. After each section of code used to transfer data from the
IOS/DPM to local memory, it is necessary to verify that the channel connected to the I0S
has not failed. Since errors are relatively infrequent occurrences, the simplicity and speed

106

of the read and process method is preferred even though it may occasionally result in
reading data that is later discarded because detection of errors has made it suspect. This
sequence provides the greatest performance benefit for the most common behavior of the
system. It should also be noted that log entries are only made by this process if the value of
the Logging Enabled parameter indicates that log entries are to be made whenever errors are
detected.

When no channel failures are detected, error analysis proceeds on the data which was
copied from the IOS/DPM and exchanged across all channels of the FTP. If the value of the
Chain Status Register (CSR) indicates that the chain did not complete in the allotted time, a
command is written to the Interface Command register (ICR) to stop the IOS in case it is
still executing a chain or has failed in such a way that is is in an infinite loop and possibly
babbling on the network. A check is then made of other error indicators to determine if an
incoming babbler was detected or if the IOS has failed. The indicators that are examined
are the contention state of the IOS and the possession default indicator in the CSR if the
chain was executed with contention, the extent to which the chain did complete as indicated
by the value of the solicited chain pointer, the extent to which the I0S correctly performed
its byte count zeroing function when executing a receive input instruction, and the ability of
the DPM to pass a read/write pattern test. When a chain does not complete, the CSR is not
reset. Therefore, the value used in the above analysis is the value last read from the CSR.
If errors are detected, a log entry is made and the type of error is returned to the Network
Manager. Otherwise, the error analysis wxll proceed with a check for a babbler condition if
the chain did complete.

When a chain completes, the value in the CSR is reset, thus the analysis to determine
whether or not a babbler is present in the network is performed on the final value of the
CSR which is saved by the end of chain program prior to commanding the ICR to switch
modes (the definition of chain completion is a switch from the solicited to the unsolicited
mode of operation). The final value of the CSR is examined for an indication of data
transmission on the network while an output instruction is being executed by this IOS.
Furthermore, if the chain is conducted with contention, the final CSR is examined for
indications that data was transmitted on the network during the polling sequence or that a
polling sequence was attempted during data transmission by this IOS. Any of these three
protocol violations are assumed to be evidence of a babbler on the network. If any of these
errors are detected, a read/write pattern test is performed on the DPM to ensure that the
error is due to a babbler and not a failed DPM. If the results of this analysis indicate the
detection of an error, a log entry is made and the error type is returned to the Network
Manager. Otherwise, the error analysis will proceed to examine the data in the Interface
Status Register (ISR) and to verify that the CSR has been reset.

If the CSR has not been reset, the error is logged and the error report to the Network
Manager will indicate a failed 10S. Otherwise, the ISR is examined for the presence of a
stuck-on-high condition of the network. If this condition is detected, an entry is made to

107

the error log and the report returned to the Network Manager indicates a failed IOS.
Otherwise, the status information from each node transaction is analyzed.

The status information from each node transaction is examined for error information as
follows. The HDLC status, which is saved after the transmission of the command to the
node, indicates whether or not any framing or overrun errors occurred during the
transmission. If this error is detected, the IOS is considered failed; a log entry is made and
the report to the Network Manager indicates a failed IOS. If the byte count kept by the IOS
on the data returned by the node still has its initial (non-zero) value, the IOS is considered
failed. This value should be a value from zero to fifteen. Fifteen is the correct byte count,
zero indicates no response is received from this node and any value in between is an
incomplete transmission from the node. The IOS when operating correctly will zero this
byte count and then start to increment it as data is received from the node. When the initial
value has not been written over by the IOS, it is assumed that the IOS is not operating
correctly. This error results in a log entry being made and the report to the Network
Manager indicates a failed IOS condition was detected.

In the cases where the error is attributed to a failed I0S, no further error processing is
performed. However, some errors are attributed not to the IOS but instead to the
transaction, i.e. the node, whose status is being analyzed. When errors attributable to a’
node are detected, the error analysis proceeds to examine the status of the remaining
transactions in the chain. Thus, if the byte count has any other value except the correct byte
count of fifteen, the error is attributed to the transaction itself and not to the IOS. In
particular, if the byte count is zero, then no response was received from this node. This
error condition is logged and the report returned to the Network Manager will indicate that
the transaction to this node had an error. The status of each transaction is then examined for
the presence of HDLC protocol errors, the transmission by the node of an incorrect number
of residual bits and an invalid sumcheck appended to the message. The detection of any of
these errors results in a log entry being made and an error indication being scored against
that transaction. Should any of these errors be detected, a read/write pattern test is
performed on the DPM to be sure that the error is not attributable to a failed DPM memory.
A failed memory results in a an error report to the Network Manager indicating a failed
IOS. If the memory test indicates that the memory is okay, the error report will indicate
which individual transactions had an error. When a transaction has no errors scored
against it, the data associated with that transaction is returned by this process to the
Network Manager as part of the final report. However, if the transaction has errors scored
against it, no data from that transaction is returned to the Network Manager. When all the
transactions have been subjected to this error analysis, thic orocess is complete.

108

3.2.4.2 Process Name: Execution of Node Status Collection Chains

Inputs: I/O Network Identifier
Active Root Link
Logging Enable
Outputs: Status Collection Report
Requirements . I/O Network Functional Requirements,
Reference: - Section 2.3.1,2.4.2
Notes: None.
Description:

This process is responsible for executing status collection chains for the Network Manager
of the network specified by the I/O Network Identifier. Unlike reconfiguration chains,
these chains resemble other I/O chains in the system in that the number of transactions in
the chain is constant and the chain is always conducted with contention. The differences
between the reconfiguration chain and the status collection chain necessitates some
differences in the way in which these chains are executed. However, the differences are
few in number and will be described here.

Since the status collection chain is always run with contention, the Network Manager does
not need to supply this process with a Contention Option. Similarly, since the data which is
used to collect status from the nodes is static, the Network Manager does not need to
supply a list of commands to be sent to the nodes. It does, however, expect to receive a
report back from this process. The Status Collection Report is a summary of the analysis
of status information obtained by the IOS during the execution of this chain. The report
takes the form of a discriminated record. One field of the record indicates whether or not
an interface failure was detected when executing this chain, and if there has been, whether
it is due to a failed FTP channel or failed IOS hardware. When no interface failure is-
detected, another field indicates whether or not a babbler has been detected during the
execution of this chain, and if there has been, whether not it was detected during contention
for the network or during data transmission. When neither a failed interface nor a babbler -
is detected, the last field contains status and data resulting from the conduct of each
transaction in the chain. This information is also packaged as a discriminated record, one
for each transaction in the chain. The first field of this record indicates whether or not the
transaction is selected. When the transaction is selected, another field contains the status of

the transaction. If the transaction had no errors, the last field will contain the data returned
by the node.

109

This process is divided into two main functions, chain execution and error analysis, in the
same manner as the process which conducts the reconfiguration chain.” The execution of
the status collection chain differs from the execution of the reconfiguration chain only in
that no changes to the program which executes this chain are made and no output records
need to be initialized. Furthermore, once the command to start the chain is written to the
ICR, the process suspends itself while waiting for chain execution to complete. The
process suspends itself for the number of milliseconds equal to the number of selected
transactions in the chain plus one.

The error analysis is identical to that of the error analysis conducted for the reconfiguration
chain with one distinction: if the transaction is deselected, no processing is done on that
transaction. The report returned to the Network Manager also indicates that this transaction
is deselected. Since this process may be called by the Network Manager when errors are
expected, i.e. when no response is the valid response to a transaction to a node, the option
of disabling error logging is also provided by this process.

110

3.2.4.3 Process Name: Management of Status Collection Transactions

Inputs: , 1/O Network Identifier
Node Number
Active Channel
Outputs: Updated Status Chain
Requirements I/O Network Functional Requirements,
Reference: Section 2.4.1
Notes: None.
Description:

This process is responsible for maintaining the node status collection program in the state
requested by the Network Manager and for maintaining a history of this information. In
this context, there are three services which this process provides: transaction deselection,

- transaction selection, and updating the status collection chain in an IOS connected to a

recovered FTP channel.

The node status chain is an ordered set of transactions, one to each node in an I/O
Network. The program which controls chain execution consists of a set of instructions
called a header, which is executed once per chain at the start of the chain, and a set of
repeated instructions, one for each node in the network, which controls the transmission of
data on the network. Each member of this set is identical to every other member with a few
exceptions. The differences are the address of the output packet in the output instruction,
the address of the input packet in the receive input instruction, and the address of the next
instruction in the branch instruction. Transaction selection simply manipulates the address
operand of the branch instruction so as to either bypass or include the transmission of a
status command to a node.

To deselect a transaction, the Network Manager calls the subprogram Deselect Node Status
Transaction with the Network Identifier of its network, the Node Number of the node
whose status transaction is to be bypassed, and the channel identifier of the FTP channel
containing the active IOS. If the transaction is already bypassed, no action takes place.
However, if the transaction is not already bypassed, the deselection is logged in a static
variable, called the Selection Status, which is maintained by this process. Each network has
its own Selection Status with an entry for each node in the network. Another static
variable, called the Active Node Count, is decremented. Next a read pointer and a write
pointer are assigned values. The read pointer is assigned a value which allows it to read
only from the active DPM while the write pointer will write to all the DPMs connected to

111

this network. The Selection Status of this network is then searched in reverse order starting
with the transaction which is about to be bypassed for the selected node closest to (but
preceding) that transaction. This is the node whose status is collected before the status of
the node which is undergoing deselection. If such a node is found, the address operand of
its branch instruction is changed to point to the instruction pointed to by the branch
instruction of the deselected transaction. If a selected node is not found, as would be the
case if the node being deselected is the first node in the chain, the address operand of the
branch instruction in the chain header is changed to point to the instruction pointed to by the
branch instruction of the deselected transaction. The read and write pointers are used so that
whenever a value is read form the DPM, as with the value of the address operand of the
branch instruction of the deselected transaction, it is read from one channel only and
exchanged across all channels. However, whenever a value is written to the DPM, it is
written to all the DPMs connected to this network simultaneously. The former is necessary
because channel failures or simplex operation of the system will result in errors read from
multiple, noncongruent sources. The latter is necessary so that DPMs connected to all non-
failed FTP channels have the correct, current version of the status collection chain.

To select a transaction, the Network Manager calls the subprogram Select Node Status
Transaction with the Network Identifier of its network, the Node Number of the node
whose status transaction is to be bypassed, and the channel identifier of the FTP channel
containing the active IOS. If the transaction is already selected, no action takes place.
However, if the transaction is currently bypassed, the read and write pointers are generated
as for the transaction deselection process. Again, the Selection Status is searched in
reverse order starting with the transaction which is to be selected for the non-bypassed
transaction closest to (but preceding) that transaction. If such a transaction is found, the
address operand of the branch instruction of the transaction being selected is changed to
point to the same address that the preceding transaction points to. Following that change,
the address operand of the branch instruction of the preceding transaction is changed to
point to the transaction being selected. When no preceding transaction is found, as would
be the case if the transaction being selected is the first transaction in the status collection
chain, the address operand of the branch instruction of the transaction being selected is
changed to point to the same address that the branch instruction in the header points to.
Following that change, the address operand of the branch instruction of the header is
changed to point to the transaction being selected. The read and write pointers are used in
the same fashion as in the transaction deselection procedure. Finally, the Selection Status of

the selected transaction is updated to indicate that this transaction is selected and the Active
Node Count is incremented.

The thied subprogram provided by this process is called Update Node Status Chain. It is
used whenever an FTP channel has become desynchronized due to a transient fault and
therefore taken offline by the GPC FDIR process but later restored to service. Any
changes made to the node status chains of networks connected to this GPC through the
failed channel will not actually reach the DPMs in that channel. Of course, the changes will

112

be made to the node status chains residing in DPMs connected to non-failed channels.
When the failed channel is brought back on line and all its local memory has been aligned,
its DPMs must be reinitialized. Part of the reinitialization process will be to update the
status collection chains in these DPMs. The process begins by initializing a pointer which
points to one channel only, i.e. the channel being restored, since the changes made to this
chain already exist in DPMs belonging to other root links in the network. Next, the
address operand of the branch instruction in the header is initialized to point to the end of
chain program. Each value in the Selection Status of this network is then examined in turn
starting with the first transaction in the chain to determine whether or not that transaction is
selected. If it is not selected, it is simply passed over. If it is selected, however, the
address operand of the last selected transaction is changed to point to this transaction. In
the case of the first selected transaction that is found, the operand of the branch instruction
in the header is changed instead. When the last selected transaction is found, the address
operand of its branch instruction is assigned the address of the end of chain program.

113

3.2.4.4 Process Name: Testing for Presence of Babbler on Network

Inputs: I/O Network Identifier

Active Root Link
Outputs: Babbler Report
Requirements I/O Network Functional Requirements,
Reference: Section 24.1, 2.4.3 -
Notes: None.
Description:

This process is responsible for executing a chain on the network which will detect the
presence of a babbler. This subprogram is called by the Network Manager as a diagnostic
tool when it suspects the presence of a babbler on the network. The test is accomplished
by using the header of the reconfiguration program as if it were the entire program. As
with status collection and node reconfiguration, the processing is performed within a
window of time during which channel failures of the active root link can be detected. The
address operand of the branch instruction of the header is changed to point to the end of
chain program and restored at the completion of the test. The process suspends itself while
waiting for the chain to complete. To extend the time over which babbler detection can
occur, the full poll, rather than an immediate poll is conducted. The various fields of the
CSR, the final CSR and the ISR are examined for evidence of a babbler on the network.
This procesSing is described in detail in section 3.2.4.1. If a babbler, a failed channel, or
failed IOS is detected during this diagnostic test, the error is logged and a report is returned
to the Network Manager indicating the type of error which was detected. Otherwise, a
report is returned to the Network Manager indicating that no errors were detected.

114

3.3 I/O Network Databases

The 1/O Network Databases serve as a repository of static information about I/O networks.
They contain a software description of the physical makeup of the I/O networks in the
system. They also contain the information necessary to map logical data related to networks
into physical data. The databases also contain information about the organization of the I/O
networks into I/O Services.

The I/O Central Database holds information about every /O network and every I/O Service
in the system. The I/O Local Database contains information about the I/O networks to
which a particular GPC is physically connected. The I/O Local Database references the I/O
Central Database during program initialization to obtain information about the networks to

- which its GPC is connected. Using this information, the I/O Local Database deduces other

information about its networks and stores all this data locally.

3.3.1 Process Name: I/O Central Database
Inputs: 1/O Network Identifier

I/O Service Identifier

~ GPC Identifier

Outputs: Network Topology

I/O Service Descriptor

Connection Indicator
Requirements I/O Network Functional Requirements,
Reference: Section 2.3.2 "
Notes: In systems with mass memory, this data is stored on those

devices. In systems without mass storage, each GPC will
have an instance of this process. '

Dscriptionf

This process is responsible for providing users with accurate, consistent information about
the physical makeup and logical organization of all the I/O networks in the system. This
information can be stored as binary data in a file or it can be generated by assignment
statements in a program and then transferred to an appropriate storage medium. In either
case, prior to accepting calls from users, it will verify that the network topologies it can
provide are self consistent. This means that node to node connections are commutative,
i.e. if node 1 is connected to node 2, then node 2 is connected to node 3. Furthermore,
since a network may only be assigned to only one I/O Service, it will verify that a network
identifier appears in only one I/O Service descriptor. Since this database is static, these

115

checks need to be performed only once. If any errors are detected in the I/O Central
Database, an error message will be displayed for an operator and further initialization will
be aborted. In this way any possible run time problems due to faulty data are eliminated.

To obtain the topology of a network, a user must provide this process with the logical
identifier of that network. To obtain a service descriptor of an I/O Service, a user must
provide this process with the logical identifier of that service. To obtain a network
connection indicator, a user must provide this process with the logical identifier of the
GPC about which it wants network connection information.

The primary users of this process are the I/O Local Databases from the various GPCs in the
system. Other users could be the Resource Allocator and the System Manager.

116

3.3.2 Process Name: I/O Local Database

Inputs: 1/O Service Identifier
I/O Network Identifier
Channel Number

Outputs: Connected Networks
Available I/O Services
Network Topology
I/O Service Descriptor
Root Links
Channel Identifier

Requirements I/O Network Functional Requirements,

Reference: Section 2.3.2

Notes: None.

Description:

This process is responsible for providing users with information about networks to which a
GPC is physically. connected. This information is assembled at initialization or power up
time for use by other processes during run time. During system initialization, this process
reads data from the I/O Central Database about the I/O networks to which it is connected.
Its first action is to obtain from the central database a list of networks to which it is
connected and a list of I/O Services which it must support. For each network to which it is
connected, it obtains from the central database a copy of that network's topology. For each
of these networks, it uses the information in the topology definition to generate a list of
which connect this network to its GPC. Rootlinks in an /O network must meet certain
criteria as stated in Appendix B, Network Operating Rules. Once the data describing the
rootlinks has been collected, it is reviewed for correctness in accordance with these rules.
If any errors are detected in the I/O Local Database, an error message will be displayed for
an operator and further elaboration will be aborted. As with the I/O Central Database, this
- eliminates any possible run time problems due to faulty data.

To obtain the list of networks to which this GPC is connected, a user makes a call to a
function which needs no parameters but which returns the list of connected networks. A
similar call will return to a user a list of I/O Services which are available to this GPC. To
obtain the topology of a given network, a user must provide this process with the logical
identifier of that network. In a similar way, a user can obtain information which describes
the rootlinks of a given network. To obtain the /O Service Descriptor of an available I/O
Service, a user calls a function with the logical identifier of that service. Finally, the

117

physical identifier of the channel containing a given rootlink is returned by a function which
has been provided with the logical identifier of that channel.

The primary users of this process are Network Managers, 1/O Communication Manager,
and I/O Network Status.

3.4 T/O Network Status

I/O Network Status serves as a repository of information about the state of every network
in the system. Furthermore, since the network is a physical resource under software
control, the state is also comprised of information about the logical process which has
access to the network at any given time. Two processes share responsibility for
determining network status: the I/O Network Manager and the I/O Communication
Manager.

The hardware components in the network which are viewed as part of the AIPS system are
the nodes, the ports of the node, and the IOSs. (A link is defined as two ports on adjacent
nodes and the cable between them.) The state of the nodes and the IOSs is determined
solely by the Network Manager. This information is stored in Network Hardware Status.
Thus the hardware status is the Network Manager's view of the network hardware made
available to any other process in the system. Of course, the actual physical state of the
hardware may change many times during network growth and reconfiguration. However,
these transitionary periods are of short duration. Thus the values stored in Network
Hardware Status are stable values representing the view of the Network Manager after any
necessary changes in configuration have been made. The state of DIUs, the rootlink
currently in use, and who controls access to network resources is determined jointly by the
I/O Communication Manager and the I/O Network Manager. This information is stored in
Logical Network Status. '

Since there may be several GPCs in a system, the status for a given network resides -
initially on the GPC which hosts the Network Manager of that network. A process on one
GPC which needs to obtain the status of a network connected to another GPC will use
Intercomputer System Services to effect the transfer.

118

3.4.1 Process Name: Network Hardware Status

Inputs: I/O Network Identifier
: Node Status

Interface Status

Network Status

Network Is Active Flag

Update Generation
Outputs: Interface Status

Network Status

Update Generation

Updated Status Flag
Requirements - 1/O Network Functional Requirements,
Reference: Section 2.3.3
Notes: _ None.
Description:

This process is responsible for maintaining current information about the status of the
network hardware of all the I/O networks in the system. Network hardware consists of
nodes, links and IOSs. An instance of this process exists on every GPC which is
connected to an I/O network. For each of these networks, a status objéct is allocated and
initialized. Any necessary information about the number of nodes and IOSs in the network
is obtained from the I/O Local Database. Since several processes may need to access this
data, each status object must be protected so that the information it contains is consistent.
That is, read/write accesses to the status object are restricted so that only one outside
process may write to the object at a time and that during this operation no other processes
can read the object. Furthermore, during a read operation, no outside process can write to
the object. However, several processes may simultaneously read the object.

The status of a node may be active, failed, or idle. The initial value of node status is idle;
however, nodes may have an idle status only prior to the activation of a Network Manager
for the network. Once the Network Manager has initialized the network hardware, the
status of a node must either be active or failed. When a node is failed, it means that no
operational link to that node exists. When a node is active, it means that the node has an
operational link to the rest of the network and that the Network Manager detects no protocol
violations when communicating with the node.

119

Links consist of two ports, one on each node, and the wire that connects them. Since it is
not possible to isolate a link failure to one of these three components, link status in fact is
described by the port status of the two ports which are at opposite ends of the link and
which always therefore have identical status. The status of a port is either idle, active or
failed. Unlike nodes, a port may.continue to have an idle status after a network is
initialized by the Network Manager. When the status of a port is idle, it means the port
hardware is not currently enabled. However, there are two possible reasons for this status.
First, there niay be no other network element connected to that port. Second, the adjacent
element is a node and this port is part of a spare link to that node. As a spare port, it could
be used by the Network Manager to reconfigure the network in the event of a failure
somewhere else in the network. When a port is idle, it does not pass along messages
which its node receives on its other ports, and an idle port does not transmit (to other ports
of its node) messages which it receives. When the status of a port is active, it means the
port communication hardware is enabled. An enabled port gates messages it receives to
other enabled ports in its node and it retransmits messages received by other enabled ports
to other elements in the network. When a port is failed, it means that the Network Manager
has detected some communication protocol violation when using this port. The
enable/disable state of the hardware is not necessarily known. The failure may actually
exist beyond the port itself. What is significant about this status is that it indicates the
boundary of a fault containment region. The Network Manager will not try to use a failed

. port as part of the network. '

The status of an IOS is either idle, available, active, failed-channel or failed-IOS. The
initial value of the status of an IOS is idle. During the power on sequence each IOS and its
root node are given a series of diagnostic tests. If they do not pass these tests, the IOS
status is downgraded to either failed- channel or failed-ios, depending on the cause of the
failure. In a manner similar to that of nodes, IOSs may have an idle status only prior to the
activation of a Network Manager for the network. Once the Network Manager has
initialized the network hardware, the status of an IOS must be one of the other four
allowable values. An IOS with-a status of failed-ios has been diagnosed by the Network
Manager or the power on test sequence as having a serious hardware fault. Such a fault can
be detected while using the IOS to run chains on the network. An IOS with this status is
no longer used by the Network Manager or by the /O Communication Manager for any
network access. An IOS whose status is failed-channel, however, may not have any
hardware faults of its own but, nevertheless, cannot be used to execute chains because it is
connected to a channel which, according to GPC FDIR, has failed. If the channel is
brought back online, the status of this IOS is upgraded to available. Either type of failed
IOS status is considered a root link failure. An IOS whose status is active is the IOS which
is currently being used to execute chaine An IOS whose status is available is ready to
become the active IOS if there is a root link failure of any type in the active 10S.

This process supports several types of read/write operations. Network status consists of
node status and interface status. It is possible to read or write either part separately or both

120

parts in one subprogram call. The object here is efficiency: if the status of only one part
has changed, the writing process can indicate to this process which part to update. This
process will only update that part. If a user is only interested in one part of the status, it
may read only that part. Furthermore, a user can determine whether or not any part of the
status has changed since the last time it read status and therefore avoid an unnecessary
transfer of data. There is no reason to read status if the copy is already current.

Finally, in a distributed AIPS System it will be necessary to route calls for status to the
proper GPC for reply. This will require use of Intercomputer System Services.

121

3.4.2 Process Name: Logical Status

Inputs: I/O Network Identifier
Network Usability
Current Root Link
Unreachable DIUs

Outputs: Network Usability
Current Root Link
Unreachable DIUs

Requirements I/O Network Functional Requirements,

Reference: Section 2.3.3

Notes: None.

Description:

This process supports the protocol which governs access to an I/O Network. The two
processes which may access a network are the I/O Network Manager of that network and
the I/O Communication Manager. Since only one of these processes can use a network at
any given time, a protocol needs to be in place to ensure non-overlapping use of the
network by these processes. Additional information about the status of the network is also
managed by this process. This includes the list of Unreachable DIUs and the root link
being used by the process in control of the network.

Network Usability may have one of three values, in-service, out-of-service, and repaired.
Whenever the network is in-service, it may only be accessed by the I/O Communication
Manager. Furthermore, only the I/O Communication Manager may take a network out-of-
service. Once out-of-service, however, a network may only be accessed by its Network
Manager. The Network Manager can set Network Usability to repaired, and the I/O
Communication Manager in turn can put a network back in-service. Whenever the I/O
Communication Manager detects a communication error when using a network, it takes the
- network out-of-service by calling a subprogram in this process. The I/O Network Manager
can then be activated to perform its FDIR on the network. Once it has reconfigured the
network, it determines which, if any, DIUs are now unreachable, i.e. cannot communicate
over the network due to known hardware faults in the network. A DIU is unreachable if the
node to which it is attached is failed or if the port adjacent to thé DIU is failed. This latter
case means that during the growth of the network, when an attempt was made to enable this
port, it appeared that the DIU was babbling and therefore needed to be isolated from the
network. After recording this list of unreachable DIUs, the Network Manager indicates that
it will no longer use the network by setting the Network Usability to repaired. The I/O

122

Communication Manager can then put the network back in-service. Whoever has access to
the network, also has write access to the shared variables of this process. Thus, the value
of the current root link is the value being used by whichever process controls the network.
The controlling process may change this to any other available root link if necessary. When
control is transitioned from one process to the other, the incoming process adjusts whatever
local data necessary to be able to make use of the current root link.

3.5 YO Network Logs
This process is responsible for keeping a log relating to the history of network hardware

for each network in the system. The Network Manager and the I/O Communication
Manager both make log entries. The entries can be displayed on a terminal.

3.5.1 Process Name: I/O Error Logs
Inputs: I/O Network Identifier
Log Entry
Outputs: Display of Log Entries
Requirements I/O Network Functional Requirements,
Reference: Section 2.3.4
Notes: None.
Description:

This process is responsible for maintaining a circular log of error information for each
network in the system. The errors will be recorded by the Network Manager and the I/O
Communication Manager. An error is loosely defined as any communications protocol
violation detected by any software module in the above processes. The logs are therefore
general purpose. The log should have fields for the network identifier, a node or root link
identifier, a string which identifies the subprogram making the log entry, a string to
describe the error and a field to allow up to four bytes of hexadecimal data to be recorded in
the log. Since all entries may not need all possible fields, various combinations of the
above fields should be allowed. Log entries will be time stamped by this process.

The log will display its entries in a chronological fashion, with the oldest entries appearing
first on the display window. Each displayed entry will show the time stamp to the nearest
ten milliseconds, the string identifying the caller, and all other data stored in the entry in
neat columns. It will be possible to display the log for any network in the system.

123

3.5.2 Process Name: I/O Event Logs

Inputs: I/O Network Identifier
Log Entry
Outputs: Display of Log Entries
Requirements I/O Network Functional Requirements,
Reference: Section 2.3.4
Notes: None.
Description:

This process is responsible for maintaining a circular log of event information for each
network in the system. The events will be recorded by the Network Manager and the /O
Communication Manager. An event is loosely defined as any occurrence of interest which
any software module in the above processes wishes to record. The logs are therefore
general purpose. The log should have fields for the network identifier, a node or root link
identifier, a string which identifies the subprogram making the log entry, a string to
describe the error and a field to allow up to four bytes of hexadecimal data to be recorded in
the log. Since all entries may not need all possible fields, various combinations of the
above fields should be allowed. Log entries will be time stamped by this process.

The log will display its entries in a chronological fashion, with the oldest entries appearing
first on the display window. Each displayed entry will show the time stamp to the nearest
ten milliseconds, the string identifying the caller, and all other data stored in the entry in
neat columns. It will be possible to display the log for any network in the system.

3.6 Process Name: Network Status Monitor
Inputs: I/O Network Identifier
Network Display Database
Network Status
Outputs: Network Display
Requirements 1/O Network Functional Requirements,
Reference: Section 2.3.5
Notes: None.
Description:

124

At present displays for three network topologies are available, a six node network, a ten
node network, and a fifteen node network. Each display is run as part of the local
operating system in each GPC. Figure 20 is a diagram of the VT100 (black and white)
display of a 15 node network. The node ID is in the middle of each node with the five port
IDs surrounding it. The display uses the three levels of intensity of the VT100 graphics to
distinguish failed nodes, links or ports from active nodes, links or ports. Dashed lines
indicate idle links, solid lines indicate active links, and dashed, highlighted lines indicate
failed links. In Figure 1, the fact that node 02 is darkened indicates that it has failed. All
~other nodes are active. The three root links (25, 26 and 27) are all active, but root link 25,
connected to Channel A, is currently the active interface to the network and is shown as a
thicker line. If a VT240 terminal is available, failed nodes and links are colored red, active
links are solid green lines, and idle links are dashed green lines. The network status display
can be requested by an operator command to the GPC local operating system via the
VT100 or VT240 and a RS232 link. The local operating system then displays the current
status of the network as in Figure 1 and continues to update that display as links or nodes
fail and reconfiguration takes place. :

The display is derived from the Network Manager's view of the status of the network
hardware as read from I/O Network Status (Section 3.4.1). The display process
periodically queries the I/O Network Status process about changes in the status of the
network. If changes have occurred since the last time the display process obtained status
information, it obtains a new copy of the status information record. It compares its
previous copy of the status record to the new copy to detect which network components
have a new value of status and then updates the display accordingly. Thus the display is not
completely redrawn each time network status changes which produces a significant gain in
the response time of the display. '

The network displays are presently specific to a particular network topology. The position
- of each node and link is known in advance. This is in keeping with the fact that the
network topologies are presently also defined by static databases. However, it is possible
to enhance the present implementation by the use of more flexible data structures to
represent a network topology and by providing algorithms to dynamically deduce the
topology of any network connected to a GPC. When these capabilities are in place, a
logical next step is to implement a correspondingly flexible network display process.

125

16 *TETITTLLITRTT|RTTRRRRTRTRRRY

\
‘3 0 3 ‘2 ‘3 09] & ‘2 ‘1 2
— 4 - w — - — [
4 2p~~? 305 4 2p~» 110 (}4 4153

\ \ 1 N
:) 9 18 12 14
\ SLRRCTTCRCTRRRRBVRBRBCRRTY
AL R T e R N S T N N S Y ‘\\\\“‘ 19
\ A) \
\ \ : A 1 \
3,07 2,08 3 1"
1] T 1
\
6 0 11%) 15
7 N
2
406 23 (vaneq311
0 sTswwwwd 4 0
|

NN

Figure 20. I/O Network Display

3.7 YO Network Data Dictionary

Active Root Link : A record containing the channel number and the channel identifier of the
FTP channel which is currently being used to access a given network via an IOS connected
to that channel.

Active Root Link Flag: A Boolean valued flag indicating whether or not a working
connection from a GPC to a root node exists.

Available I/O Services : An array of booleans indexed by I/O Service identifiers, one for

each GPC in the system. When the boolean is true, the given service is available to the
GPC.

Babbler Keport : A record containing the results of a test which can detect the presence of a
babbler on a network. It indicates whether or not the IOS is failed. If it is failed, it
indicates whether the failure is due to a failed FTP channel or failed IOS hardware. If the

IOS is not failed, it indicates whether or not a babbler was detected on the network by the
I0S.

126

BABBLER_REPORT (INTERFACE_FAILURE)

Case INTERFACE_FAILURE
when TRUE => ' .
INTERFACE_FAILURE_TYPE
when FALSE =>
BABBLER_DETECTED

Branch Record : A discriminated record which contains information about the nodes which
lie downline from an outboard of the failed node to which the branch belongs. If any nodes
lie on this branch, their node number are entered in a queue in the record. A boolean flag
indicates whether or not this branch is reconnected to the network or still requires further
network reconfiguration to make these nodes reachable. The number of nodes in this
branch is also kept in the record. -

BRANCH_RECORD(ANY_NODES_IN_BRANCH))

Case ANY_NODES_IN_BRANCH
when FALSE =>
null;
when TRUE =>
RECONNECTED
QUEUE_OF_NODES_IN_BRANCH
NEXT_ENTRY_IN_QUEUE

Channel Identifier : An identifier which designates a particular physical channel of an IOP.

Channel Number : A logical identifier for a channel of an IOP which contains the I0S
connected to a given network.

Channel Selection : An array indicating which FTP channels interface to a particular
network.

Configuration Chain : An IOS program which executes a variable number of transactions
on the network for the Network Manager. It is designed to allow the chain to be run with or
without contention.

127

CONFIGURATION CHAIN

HEADER
1
LINKED
LISTOF
TRANSACTIONS
2
N

START POLLOR
NOOP INSTRUCTION TRANSACTION
1
SEND OUTPUT
L , INSTRUCTION OUTPUT PACKET
#
. ——| BYTES
: SENT
GETINPUT
L INSTRUCTION INPUT PACKET
OTHER
® BYTES sTATUS | DATA
BRANCH TO NEXT RECD | INFO
. INSTRUCTION
.
1
_i__ END OF CHAIN

PROGRAM

Configuration Commands : An ordered set of formatted messages which the Network
Manager wishes to send to nodes in its network. The number of messages can vary from a
minimum of one message to a maximum equal to the number of nodes in the network. The
messages constitute the output packets transmitted by the Configuration Chain.

NODE_COMMAND_ARRAY_RECORD

COUNT

NODE_COMMAND_ARRAY

NODE_COMMAND_ARRAY

1

2

NODE

MESSAGE °

COUNT

Configuration Lifetime : The field of the node reconfiguration command message which
specifies how long the node should keep the port configuration also specified in the
message in effect. A value of one means that the change in configuration is permanent and a
value of zero means the change is in effect only until the response to this command has
been transmitted whereupon the previous port configuration is restored.

Configuration Report : A record containing the results of the attempt to send out a set of
Configuration Commands for the Network Manager. The first field indicates whether or
not the network interface is failed, and if it is failed, the cause of the failure. If the interface
is not failed, another field indicates whether or not a babbler was detected on the network.

128

If no babbler is detected, the last field is an array of Node Response Records, one for each
transaction executed by a Configuration Chain.

CONFIGURATION_REPORT (INTERFACE_FAILURE)

Case INTERFACE_FAILURE
when TRUE =>
ATTRIBUTE_FAILURE_TO_CHANNEL_OR_IOS
when FALSE =>
CONFIG_CHAIN_RECORD

CONFIG_CHAIN_RECORD (BABBLER_DETECTED)

Case BABBLER_DETECTED
when TRUE =>
DETECTED_DURING_CONTENTION_OR_TRANSMISSION
when FALSE =>
NODE_RESPONSE_ARRAY_RECORD

NODE_RESPONSE_ARRAY_RECORD

RESPONSE_COUNT
NODE_RESPONSE_ARRAY

NODE_RESPONSE_ARRAY

NODE
1 2 RESPONSE| ¢ o o Ri%‘&bfrs]":
RECORD

NODE_RESPONSE_RECORD (HAD_ERROR)
Case HAD_ERROR
when TRUE =>

NULL
when FALSE =>

DATA

Connected Networks : An array of booleans indexed by network identifier, one for each
GPC in the system. When the boolean is true, the given network is physically connected to
the GPC. '

Connection Indicator : A boolean valued object which when true indicates that a given
network is physically connected to a given GPC.

Contention Option : A boolean flag indicating whether or not the Network Manager wants
to execute a configuration with contention for the network, in which case the boolean is
true, or without contention, in which case it is false.

129

Current Root Link : A record containing the channel number and the channel identifier of
the FTP channel which is currently being used to access a given network via an I0S
connected to that channel.

Display of Log Entries : A display on a terminal or monitor screen of the contents of the
most recent entries in the log. The number of entries displayed will depend on the type of
screen used in the implementation.

DPM Partition : An object which designates which half of the DPM memory is selected
the lower 4K bytes or the upper 4K bytes.

DPM Pointer : A pointer whose value is the address of the first addressable byte of one
DPM or a set of DPMs. When used to read from a DPM, the pointer value selects exactly
one physical DPM. When used to write to a DPM, the pointer value may select a set of
physical DPMs, at most one per channel, each occupying the same memory space within a
channel. The pointer imposes an organization on the memory space which supports the
execution of chains on an /O Network and the reading and writing of data used by those
chains.

Ending Address of DPM Memory Block : The address of the last byte in a block of
contiguous Dual Ported Memory locations.

Error Analysis Report : A discriminated record summarizing the results of the error
analysis performed on the data contained in the Status Collection Report. It indicates
whether or not any errors were detected and if they were, whether or not the analysis is
conclusive. When an analysis is conclusive, the type of fault and other information relating
to the source of the error(s) is provided.

130

ERROR_REPORT_RECORD (STATUS)
Case STATUS
when NO_ERRORS =>
null
when ANALYSIS_UNSUCCESSFUL =>
null
when ANALYSIS_SUCCESSFUL =>
FAULT_ANALYSIS_RECORD

FAULT_ANALYSIS_RECORD (FAULT)
Case FAULT —

when NO_FAULTS =>
null; ,

when BABBLER =>
null;

when ROOT_LINK_FAILURE =>
FAILED_CHANNEL
ATTRIBUTED_TO

when LINK_FAILURE =>
FAILED_ROOT
FAILED_INBOARD_PORT
FAILED_NODES
FAILED NODE_SET

when TALKS_OUT_DISABLED_PORT =>
FAILED_NODE

when SINGLE_NODE_FAILURE .=>
FAILED_NODE

when BAD_ADDR_OR_CONFIG_DATA =>
FAILED_NODE

Fast Grow Option : A Boolean valued variable which when true directs the network to be
grown without performing any diagnostic tests.

GPC Identifier :A logical identifier which is uniquely assigned to every GPC in the system.

Inboard Port of Node Under Test : The port on which the node under test receives
messages transmitted by the active IOS of the network.

Initialized IOS/DPM for Network Manager : A dual ported meméry to which programs and
data for executing chains for the I/O Network Manager have been written.

I/O Network Identifier : A logical identifier which is uniquely assigned to every physical
network in the system.

I/O Service Descriptor : A record which states whether a given I/O Service is local or

regional. In the case of a local I/O network, it contains an array of network identifiers
which specify the networks assigned to this service.

131

I0_SERVICE_DESCRIPTOR (SERVICE)

Case SERVICE
when REGIONAL. =>
NETWORK_ID
when LOCAL =>
NETWORK_ID_ARRAY

NETWORK_ID_ARRAY

NETWORK NUMBER
1 2 1D o o o |CF
TYPE NETWORKS

I/O Service Identifier : A logical identifier which is uniquely assigned to every I/O Service
in the system.

IOS Identifier : An logical identifier which designates a particular IOS which in turn maps
to a specific address range within an FTP channel.

Link Enabled Record: A discriminated record whose discriminant is a Boolean valued flag.
If the value is true, the link was enabled; otherwise a second field indicates the reason why
the link is not enabled.

Log Entry : The information passed to the I/O Error Log or the I/O Event Log by various
subprograms in the system. It contains the I/O Network Identifier, a time stamp, a field
indicating the subprogram which made the entry, a field for comments describing the
reason for the entry, and fields for up to four bytes of data which the logging subprogram
wishes to record.

Logging Enable : A boolean flag which indicates whether or not errors which are detected
should be logged to the I/O Error Log.

Long DPM Address : A record which maps the thirty-two bit address space of the
M680X0 microprocessor into specific fields which can be used to generate pointers which
will allow the FTP to access a given IOS/DPM.

Maximum Retries : A positive integer which indicates the maximum number of times to try
to reconfigure the network.

NG OiR Condiguraiivn: A wbie which noids the current contiguration ot each port of each
node in a network. A ~ct may be enabled, in which case its configuration with respect to
the GPC is either inboa:d or outboard, or disabled, in which case its configuration is
idleport. A properly functioning node will receive data transmitted by the GPC on an
inboard port and retransmit that data on all its outboard ports. A node may therefore have
at most one inboard port but several outboard ports. The inboard/outboard distinction is

132

from the point of view of the Network Manager only; the node hardware does not make
this distinction.

NETWORK_CONFIGURATION

PORT NUMBER
1 2 CONFIG| eeoe OF
ARRAY NODES
PORT CONFIG _ARRAY
PORT NUMBER
1 2 |CONFIG| eee OF
TYPE PORTS

Network Display Database : A databage which contains information about the position of
nodes, ports and links in the graphics display of the network status.

Network Interface Status : An object which holds the status of all the interfaces to a given
network. The status of an interface may be active, idle, available, failed ios, or failed

channel.

NETWORK_INTERFACE_STATUS

NETWORK

INTERFACE ”UMBFER
1 2 STATUS * o0 O
RECORD CHANNELS
NETWORK_INTERFACE_STATUS_RECORD
CHANNEL
108
STATUS

Network Is Active Flag : A Boolean valued variable indicating whether or not the network
has been initialized grown by the I/O Network Manger.

Network Status : A record consisting of Network Interface Status, Node Status, and the
channel with the active root link to the network.

Network Subscribers : A list of nodes to which either a DIU or a remote GPC is connected.
The port number used in the connection is also given for each subscriber.

Network Topology : A table which describes the physical makeup of an I/O Network. It
consists of an array of records, one for each node in the network. The record holds the
physical address of the node and a port by port description of the network element adjacent
to the node through the port. The information in this table should be sufficient to grow and
maintain the network, to deduce the rootlinks to the network from a given GPC, and to
deduce the set of DIUs which are reachable through this network. The data in this table is

133

static; it does not change over time. Therefore, to save memory space and unnecessary
copying of data, it should be referenced by means of pointers.

NETWORK TOPOLOGY

NODE NUMBER
1 2 RECORD * e 0 of
i NODES
NODE RECORD
NODE ADDRESS
NUMBER
PORT ARRAY 1 2 mFom) F

PORTS

PORT RECORD (ADJACENT_ELEMENT)

Case ADJACENT_ELEMENT
when NODE =>
NODE_NUMBER
NODE_ADDRESS
PORT_NUMBER
when GPC =>
GPC_ADDR
CHANNEL
108
when DIU =>
DIU_ADDR
DIU_ID

Network Usability : An object whose value indicates which software process, the [/O
Network Manager or the I/O Communication Manager, is allowed to transmit on an I/O
network. A network which is in-service or repaired may only be accessed by the I/O
Communication Manager. A network which is out-of-service may only be accessed by the
Network Manager. A network which is repaired has been acted upon by the Network
Manager in response to a call by the I/O Communication Manager.

Node Number : A logical identifier of a node a network. Its scope is for a given network
only.

Node Status : An array indicating the status of each node in a given network. A node may

- be active, idle, or failed. An active node has ports enabled so as to make it part of the _
virtmal bus which carriec data nn the netwarle A failad noda ic 2 nodas which ic complescly

non-functional. It is isolated from the rest of *he network by disabling ports on adjacent
nodes. An idle node is a node whose status 15 unknown because no attempt has yet been

made to reach the node by the network manager.

134

NODE_STATUS
NODE NUMBER
1 2 STATUS | o o o oz
RECORD NODES
NODE_STATUS_RECORD
ADDRESS
STATUS

PORT_STATUS_ARRAY
PORT_STATUS_ARRAY

1 2 STATUS o o o NU%B:ER
’ TYPE l
PORTS

Node Response Record : A record in which the first field indicates whether or not
communication errors were detected when the transaction to the node was executed. If
errors were not detected, a second field contains the data which the node returned in
response to the command it received.

Node Under Test : The node number of a node to be tested.

Passed Diagnostic Tests : A boolean valued flag which when true indicates that the full set
of diagnostic tests have been passed. A value of false indicates that at least one test failed.

Relative DPM address : A record which is used to map the thirty-two bit address used by
the FTP to access a location in an IOS/DPM into a sixteen bit value which the IOS will use
to access the same location. Since the address space of the IOS is 8K bytes, only the lower
thirteen bits are used in the mapping, the three highest order bits are assigned a value of
zero. The mapping is defined below, where f is the value of the ith bit in the sixteen bit
address:

0,if 15<=i<=13

f(i)= value of the ith bit in the thirty-two bit address if 0 <=i <= 11
value of the 15% bit in the thirty-two bit address if i= 12

Restore Record: A record containing information about the repaired network component
which the operator wishes to be returned to service. If a node is to be restored, the node

number is provided. If a link is to be restored, a node number and a port number adjacent
to that link is provided.

135

RESTORE_RECORD (NODE_OR _LINK)

Case NODE_OR_LINK
when NODE =>
Node Number
when LINK =>
Node Number
Port Number

Results of Channel OK Test : A boolean value which is true if the test indicates that an
FTP channel is not desynchromzed and false if it is desynchronized.

Results of DPM Block Test : A boolean value which is true is the test is passed and false
otherwise.

Results of DPM Memory Tests : A boolean value which is true is the test is passed and
false otherwise.

Results of DPM Word Test : A boolean value which is true is the test is passed and false
otherwise.

Results of Spare Link Chain : The data and status returned by the I/O Communications
Manager after the Spare Link Chain has been executed on the network.

Root Link History : A table maintained by the Network Manager with an entry for each root

link in its network. The entry holds a tally of errors attributable to the IOS connected to
that root link.

Root Links : An array of records one for each rootlink from a GPC to an I/O network.
Each record contains information about the physical makeup of that rootlink. It contains the
node address of the root node, the port of the root node used to connect to the I0S, the I0S
 identifier, and the physical channel containing the root link. ‘

ROOT_LINKS
ROOT NUMBER
1 2 LINK e e o OF
RECORD ' CHANNELS
ROOT_LINK_RECORD
CHANNEL
108

NODE_NUMBER
NODE_ADDRESS
PORT _NUMBER

136

Spare Link Cycling Log : A log with an entry for each link in the network. The value of
an entry can be either cycled or not cycled. A value of cycled means that the link has spent
at least one active cycling period in the network in the current cycle or that the link is failed.
A value of not cycled means that the link is ready to be activated.

Spawning Node : A node from which further network growth is taking place or a node
whose port is activated first when a link is being enabled.

Spawning Port : The port which is enabled first when a link is enabled. This port in turn
retransmits the reconfiguration command to the adjacent (target) node which enables the
adjacent port.

Spawning Queue : A queue into which node identifiers are placed in the order in which
those nodes are to be added to the network.

Starting Address of DPM Memory Block : The address of the first byte in a block of
contiguous Dual Ported Memory locations. '

Status Collection Report : A record containing the results of the attempt to send out a set of
Status Collection Commands for the Network Manager. The first field indicates whether or
not the network interface is failed, and if it is failed, the cause of the failure. If the interface
is not failed, another field indicates whether or not a babbler was detected on the network.
If no babbler is detected, the last field is an array of Node Response Records, one for each
selected status transaction executed by a Status Collection Chain.

STATUS COLLECTION REPORT (INTERFACE FAILURE)
Case INTERFACE_FAILURE
when TRUE => '
ATTRIBUTED_FAILURE_TO_CHANNEL_OR_IOS
when FALSE =>
STATUS CHAIN RECORD

STATUS CHAIN RECORD (BABBLER DETECTED)
Case BABBLER_DETECTED
when TRUE =>

DETECTED_DURING_CONTENTION_OR TRANSMISSION
when FALSE =>
NODE_STATUS_ARRAY_RECORD

NODE_STATUS ARRAY RECORD
COUNT
NODE_STATUS_ARRAY(1..COUNT)

NODE_STATUS ARRAY

NODE
1 2 STATUS ¢ o o COUNT
RECORD

137

System Address : A thirty-two bit value which maps to some physical location in the
system. By which the M680X0 microprocessor accesses those physical locations.

Target Node : A node being added to the network during network growth or a node whose
port is activated last when a link is being enabled.

Target Port : The port which is enabled last when a link is enabled. This port receives the
reconfiguration command from the adjacent (spawning) node which causes it to be enabled.

Unreachable DIUs : A list of DIUs which are attached to failed nodes and which therefore
cannot send or receive messages on the I/O network.

Update Generation : A value associated with each call made by an I/O Network Manager to
update the Network Status in the I/O Network Status process. Each time the status is
updated, a unique generation number is assigned to the current version of the status. Other
processes which wish to detect a change in the value of the Network Status may keep a
’copy of the generation of the last status value they have obtained from I/O Network Status.
If the generation of this copy of network status is not equal to the generation of the current
copy of status maintained by I/O Network Status, then a new value of status could be
obtained by the process.

Updated Status Chain : A status collection chain which has been modified to deselect
specific node status transactions.

Updated Status Flag : A Boolean valued flag which indicates whether or not the Network

Status of a particular network has been updated by the Network Manager since the last time
this status was obtained.

138

4.0 ADA IMPLEMENTATION OF THE I/O NETWORK MANAGER

This section bridges the gap between the software specifications of Chapter 3 and the Ada®
code used to implement those specifications. The Ada® language is widely advertised as a
design language.! Grady Booch has put forward a high level diagramatic design
methodology. This methodology has been used to map the I/O Network management
software specifications into Ada packages, tasks and subprograms. This mapping is
represented by the Booch diagrams contained in this section.

These high level Ada® constructs are the framework supporting the detailed Ada
implementation, i.e. the code which embodies the software specification. The logic
described in the software specification is further realized by the Nassi/Shneiderman
diagrams, also contained in this section, which convert this logic into standard
programming control structures. The logic of the Nassi/Shneiderman diagrams could be
coded in any language, while still retaining the high level Ada® organization of the overall
design.

1 Booch, p. 46

139

IO_NETWORK_DATA_TYPES_AND_CONSTANTS

~N

DIU_ID_TYPE

DIU_ADDRESS_TYPE

DIU_RECORD

NODE_ADDRESS_TYPE

NODE_NUM_TYPE

CHANNEL_NUM_TYPE

PORT_NUM_TYPE

I0S_ID_TYPE

ROOT_LINK_RECORD

NETWORK_INTERFACE_ARRAY_ACCESS_TYPE

PORT_RECORD

PORT_ARRAY_TYPE

NODE_RECORD_TYPE

NODE_ARRAY_ACCESS_TYPE

CONNECTION_ARRAY_TYPE

NET_SERVICE_TYPE

10_ID_TYPE

AVAILABLE_IO_SERVICES_TYPE

NET_SET_DESCRIPTOR_TYPE

SERVICE_DESCRIPTOR_TYPE

-

aYatalatalatataYaYaYaYaYaYaYaYaTaYaYaYaYe

utuuuuuUuuuuuuuuuuuu\.}u

CHANNEL_RECORD

-

Software Spcciﬁcétion Reference Number: 3.7

140

[IO_CENTRAL DATABASE

\

DIU_SPEC

CONNECTED_NETS_TO_GPC

TOPOLOGY

DATA_IS_CONSISTENT

NETS_OF_SERVICE

INITIALIZE_TOPOLOGY_DEFINITIONS

INIT_GPC_NET_CONNECT

MATCH

Software Specification Reference Number: 3.3.1

141

Subprogram: NETS_OF_SERVICE
Inputs: service identifier
Outputs: array of network identifier

l Returns an array of network ids associatied with the specified service id

Subprogram: TOPOLOGY
Inputs: network identifier
. Outputs: 3 pointer to a network topology

| Retums a pointer to the specified network's node array

Subprogram: DIU_SPEC

Inputs: diu identifier
Outputs: diu address
network identifier

Return the address of the diu and the network that the
DIU is connected to for the passed in diu identifier

Software Specification Reference Number: 3.3.1

142

Subprogram: DATA_IS_CONSISTENT
Inputs: network identifier
Outputs: boolean flag

for <each node in the net>

for <each port in the node>
77 Does the global database indicate that this port is
connected to another node ??

yes no
Call MATCH to ?? Does the global database indicate that this
see if the data port is connected to a GPC ?? -
from the port no
agrees with yes
the database.

Set GPC_PRESENT flag.

7?7 Has GPC_PRESENT been set ??

yes no

Return ‘true’ to signal that data is consistent. - Raise NO_GPC exception

DATA_IS_CONSISTENT exception handler

77 Is the exception a NO_GPC exception ?? 7

yes no

Log "No GPC" error Log generic error message

Subprogram: CONNECTED_NETS_TO_GPC
Inputs: gpc identifier
Outputs: array of booleans

Returns an array of booleans where a TRUE entry means
the net is connected to the specified GPC.

Software Specification Reference Number: 3.3.1

143

Subprogram: INIT_GPC_NET_CONNECT
Inputs: none
Outputs: none

Initialize GPC_NET_CONNECT array to all elements "false"

for <range of network id types>

for <the number of nodes in each network type>

for <the number of ports in each node>

77 Is the port which corresponds to these network,
node, and port numbers connected to a GPC ??

ycs

no .

Set the element of
GPC_NET_CONNECT which
corresponds to the port

being considered to 'true’..

Subprogram: INITIALIZE_TOPOLOGY_DEFINITIONS
Inputs: none
Outputs: none

for < each network in the system >

for < each node in the network >

for < each port in the node >

Assign values to port records specifying
parameters of adjacent element.

Software Specification Reference Number: 3.3.1

144

Joxd Jaquinu 9pou Jor] Joug ssaippe S0 Joxd pod So1 Joxd apou 507 30112 AW 3077

JOY¥T WNN FAON Joy¥d ¥yaav - ¥0o¥¥d .Ly0d 40¥¥d HAON JOYYT INTWITE

{4 PAuNd20 uondaoxa Jo adAy 1eym i,

HOLV J0j 19[puey uondaoxg

145

JOWAT 4AQy ¥sres _
95[eJ = YOTHD HOLVI 40¥d .LAOd
sok ou i
{{ 9PpOU puodRs Ay Jo _ p
[sso1ppe eo1do] oy uo 9a13e sapou oMl oY1 0 (i, MommUommw LVIN JO¥¥d HAON
A asrer
sk ou o] =
{4 JOYI0 YdBI 01 pANoduu0d are Loy ey 91e sopou oml oyl o(J i MOFHD HOLVIN _
Joyyud INIWITa
sak - ou osmI
, o5[ey =
&4 PARuu0 are suod yorym uo a18e sopou om1 oy od i MOdHO HOLVIN
sk | ou AOAAT WNN IAON
9pOu 8 0 PAIIVULOD are AU JBYf) AN SIPOU OM] Y1 O ¢, asies
594 ou

Software Specification Reference Number: 3.3.1

¢ 98ueI Ul ST JoqQUINU ISOYM OPOU B 0} PAJIdUL0 SI 31 1BY) Aes 9pou Y1 $90(¢,

Juou sidinp

uod

pou sindu
HOLVI :weidoxdqng

I0_LOCAL_DATABASE

| AVAILABLE_IO_SERVICES

ROOT_LINKS

CONNECTED_NETWORKS

SERVICE_DESCRIPTOR

TOPOLOGY

1

CHANNEL_ID_OF

LOCAL_NETWORK

CHANNEL_NUM

(' CHANNEL_CROSS_REF_ARRAY)

FIND_ROOT_LINKS

OK_ROOT_LINKS

NOT_DOUBLED

MATCH_IOS

CHECK_AVAILABLE

A

SET_CONMECTED

C

Software Specification Reference Number: 3.3.2

146

Subprogram: AVAILABLE_IO_SERVICES
Inputs: none
Outputs: /o services available on this GPC

Returns a structure which marks all existing io
services as available or not_available on the local gpc

Subprogram: ROOT_LINKS
Inputs: network identifier

Outputs: root links

| Provides the root links of the network whose 1d 1s passed as a parameter

Subprogram: CONNECTED_NETWORKS
Inputs: none

Outputs: array of booleans

Returns an array of booleans indicating
which networks are connected to this GPC

Subprogram: SERVICE_DESCRIPTOR
Inputs: io identifier

Outputs: a service descriptor

Accepts an index into the io service table and returns a service descriptor
which contains one or more network id's associated with this io service

Subprogram: TOPOLOGY
Inputs: ’ network identifier
Outputs: a pointer to network topology

77 Is the network identifier conncted to the network ??

no yes

return nuli return a pointer
to the network node array

Software Specification Reference Number: 3.3.2

147

Subprogram: CHANNEL _ID_OF

Inputs: network identifier
channel number

Outputs: channel identifier

| Returns the channel identifier of given channel number and network

Subprogram: LOCAL_NETWORK
Inputs: network identifier
Outputs: boolean flag

Returns a TRUE if the network is local to the GPC
and FALSE if it is regional or not connected

Subprogram: CHANNEL_NUM

Inputs: channel identifier
network identifier

Outputs: channel number

Returns the entry from the channel cross reference array associated
with the given channel identifier and network identifier

Software Spéciﬁcation Reference Number: 3.3.2

148

19U 9 01 GFTENOA"LON PU® SOI"HOLVIN suonoury oy Suikjdde jo sinsaz aus jo pue [eoi8o] ays wmnyoy

Sey ueojooq :smding
auou :sindug
SYANIT LOOY MO ‘weidoxdgng

Aelre 20U219J01 SSOID [PULRYD 0 SISqUMU [duueyd uSissy 0 LON SHNIT 1OOY st

sok E

{4, wwnSo] ST 1001 91 1Y §,

sk o

{4 919¥1 941 UT SHUT] 1001 AUR 3193 31V §

*3]qe) 94 OJUT SHUI|-JOOX SY INOQE UOIJBULIOJUT 3y} J9JSUBL],

‘way ploy o3 soeds yInous 3snf Suisn ‘syur| 1001 AP 10§ 3[qe1 [O0] LI

*YUT[1001 JO UOLIBIO0] 107§ 0] Sa[qeLreA Areiodw usissy

ok ar

46 OdD AW ST i,

=78 ’ ax

&6 OdD & 01 padauuod uod YIS ¢

<apou 12d suod Jo Joquinu 2> 10§

- <12U Y} U SOPOU JO J2QUINU YI> 10}

Software Specification Reference Number: 3.3.2

suou - :sindinQ
Jayynuapt yzomou :sindug
SINTT LOOY aNIA :uresSordqng

149

Subprogram: NOT_DOUBLED
Inputs: none
Outputs: boolean flag

For CHAN1 = <the number of channels in the net>

For CHAN2 = <CHAN1+1> to <the last channel in the net>

7?7 Is the same root link attached to both channels ??

yes ™o
report exror 72 Do the root links from both channels
raise connect to the same node ??
TWO_ROOTS_TO_SAME_CHANNEL o
report error
raise TWO_ROOTS_TO_SAME_NODE

returmn true

Exception handler for OK_ROOT_LINKS

7? Is the exception an IOS_DONT_MATCH error 7?

yes ™
report error return false
return false

S : MATCH_IOS
Imgrm none

Outputs: boolean flag

for CHANI1 = <the range of channels attached to the net>

for CHAN2 = <CHAN1+1> to <the last channel in the net>

77 Do both channels have the same 108 77

™ yes

raise JOS_DONT_MATCH

Software Specification Reference Number: 3.3.2

150

Subprogram: CHECK_AVAILABLE
Inputs: o identifier
Outputs: boolean flag

Get a list of the available [/O resburccs from the central database
7?7 Are the available resources regional or local ??

regional) local
Use table lookup to see if the Call SET_CONNECTED to determmine if the
net is reachable from this GPC net is fully connected.

Return a boolean value, which corresponds to whether or not the I/O nets are properly connected.

CHECK_AVAILABLE exception handler

771s the error a MIXED_CONNECTION error 7?

yes ™
Report an improper conmection error. Report that some other type of error occurred.

Subprogram: SET_CONNECTED
Inputs: net_set
Outputs: boolean flag

For <The number of nets in the service>
l Use table lookup to see if each net is reachsble from this GPC
“77? Are all of the nets reachable from this GPC ??
yes ™
For <all of the nets in the service>
) I Use table lookup to see if each net is reachable from this GPC
retumn true 77 Are any of the nets reachable from this GPC ??

yes ™
raise MIXED_CONNECTION retumn false

Software Specification Reference Number: 3.3.2

151

(I0_NETWORK_STATUS)

" STATUS_TYPE

INTERFACE_STATUS_TYPE

PORT.STATUS_ARRAY

NODE_STATUS_RECORD

NODE_STATUS_ARRAY

NEI'WORk_]NTERFACE_STATUS_RECORD

NETWORK_INTERFACE_STATUS_ARRAY

NODE_STATUS_ARRAY_RECORD

WA A A AN LA AW A AW.

NETWORK_INTERFACE_STATUS_ARRAY_RECORD

PORT_CONFIGURATION_TYPE

PORT_CONFIGURATION_ARRAY

NODE_CONFIGURATION_ARRAY

NODE_CONFIGURATION_ARRAY_RECORD

aaaaalalalaalaa'alala

JUUUL

NETWORK_STATUS_RECORD_TYPE

TEST_FOR _NEW_STATUS

READ —

WRITE H

[: [
/ /
| NETwoRk staTus Task_TYPE [

/
' YOU ARE |

o READ ALL]
-, READ IF]
——9{ WRITE ALL |

L 9f WRITE IF___]

WRITE A
\— L=__—IL")

Software Specification Reference Number: 3.4.1

152

3ey
USNLIM ISB]
Sey JUAWIOU]
Sey usNLAM Isg[| 9ATIOE O] snyels
3ey USNLIM 1SE[JuowoaIou] PANOR UTISSY doepAul
parepdn | yuswaioug sniels stels 01 snjels
N | snjels Sey pawajoid |paooxd jo Sey pavalod jo
epdn parosjord | uonumiIse] | jopy | PIRY smels | usnum isep | ploy smels
NUEN 01 SMels | JUSWAIOUL [snyejs spou {OBHAUIO) | JUIWAIOU] dovpIAUL
0} snjess udissy | SABOEOT | oysmeys pruels udissy snjers ugdissy
patoajord snels |9ANde UBISSY | uSissy defjaAnde | paraloxd o) smels |
ugissy ooepo)ur | SE[J 9ADIE snjes yum smeds pnjels ugissy | doejraul
[e peal AUAM QLM opou um | SdeHAUL ITe aaum pear
1doooy 1doooy 1doooy ooy Pium 1doooy 1doooy 1dacoy
€ Pel | jroium B UM [su—oum | € JT SIOA | (6 UM JrpesT |
< PIpadu UM IO peal Jo 2dAT oy} > 958D
o 1 U7 JOJ Se[J UM I58] a1 JUswaiou]
SIS pajoajodd O] SfIels JU) USISSy
Ie_2a1um 1daddy
Pr 13U~ AW O} JOUJTIUSPI JIOMISU) USISSY
oI NOA 1200y
sness jIomiou
snje)s pajodjoxd
SIS JAIIOR :sinding
snjeis apou
- SMels dorLIAUL
snyels JJomiou :sindug

HdAL MSVL SNLVLS YIOM.LAN :ureidoidqng

>

Software Specification Reference Number: 3.4.1

153

Subprogram: TEST_FOR_NEW_STATUS

Inputs: i/o network identifier
Outputs: last updated flag
has new value

77 Is last updated flag not equal to last written flag for this network ??

no Yes

Set has new value to FALSE Set has new value to TRUE

Subprogram: READ_ALL

Inputs: network identifier
last updated flag
last updated flag

Outputs: pegwork status

77 Is the network connected to this GPC 7?

no yes

Update the network status

raise .
network_not_connected_to_this_gpc

Subprogram: READ_IF
Inputs: network identifier
Outputs: interface status

77 Is the network connected to this GPC 7?

no yes

date the interface status

raise .
network_not_connected_to_this_gpc

Software Specification Reference Number: 3.4.1

154

Subprogram: WRITE_NS
Inputs: network identifier

network status
Oulputs: none

| Update the node status of the network

Subprogram: WRITE_IF
Inputs: network identifier

interface status
Oll|plltS: none

| Update the interface and activity status of the network

Subprogram: WRITE_IF_A
Inputs: network identifier

interface status
active
Outputs: pone
| Update the status of the network

Subprogram: WRITE_ALL
Inputs: network identifier

node status
Outputs: none

L . - Update the status of the network

Subprogram: WRITE_A
Inputs: network identifier
active

Outputs: none

1 Update the activity status of the network

Software Specification Reference Number: 3.4.1

155

IO_ERROR_LOGS

LOG_ERROR

DISPLAY_ERROR

\

LOG_ERROR

Call LOG_ERROR_ENTRY to log the error. Overloaded versions of
LOG_ERROR exist to allow different calling conventions.

LOG_ERROR_ENTRY

77 Is the log index equal to the maximum number of errors that can be stored ??

yes o

Reset the index to 1. Add 1 to the index.

Perform variable assigments to store error information in the error log array.

Add one to the count of total errors, rolling over to zero if an overflow occurs.

Exception handler for LOG_ERROR_ENTRY

Call LOG_EXCEPTION to record the exception.

DISPLAY_ERROR_LOG

Perform screen initilizations.

Print "TOSS ERROR LOG" as a heading. (double height line)

77 Are there any errors to print 7?

™ yes

Print column headings.

for <the number of errors>

I : Print a description of each error, formatting to fit the column headings.

rrint a c1osing line, whicn IepuIL UIC WAl HUIUSE Ul viiuis :vsévsl.

Software Specification Reference Number: 3.5.1

156

IO_EVENT_LOGS

LOG_EVENT

DISPLAY_EVENT

L

LOG_EVENT

Call LOG_EVENT_ENTRY to log the event Overloaded versions of
LOG_EVENT exist to allow different calling conventions.

LOG_EVENT_ENTRY

7? Is the log index equal to the maximum number of enents that can be stored 77

yes o

Reset the index to 1. Add 1 to the index.

Perform variable assigments to store event information in the event log array.

Add one to the count of total events, rolling over to zero if an overflow occurs.

Exception handler for LOG_EVENT_ENTRY

Call LOG_EXCEPTION to record the exception.

DISPLAY_EVENT_LOG

Perform screen initilizations.

Print "IOSS EVENT LOG" as a heading. (double height line)

7? Are there any events to print 7?

™ yes

Print column headings.

for <the number of events>

I - Print a description of each event formatting to fit the column headings.

Print a closing line, which reports the total number of events logged. _

Software Specification Reference Number: 3.5.2

157

IOS_DATA_TYPES

TIMER_LIMIT_TYPE

HDLC_IR_TYPE

HDLC_SR_TYPE

HDLC_CR1_TYPE

HDLC_CR2_TYPE

HDLC_CR3_TYPE

CHAIN_STATUS_REGISTER_TYPE

INTERFACE_COMMAND_REGISTER_TYPE

INTERFACE_STATUS_REGISTER_TYPE

POLL_REGISTER_2_TYPE

CHAIN_STATUS_TYPE

NODE_OUTPUT_RECORD

NODE_INPUT_RECORD

o et

avalalalalatatatalatelatala
U U U U U U U U YU

UNSOLICITED_INPUT_BUFFER

L J

Software Specification Reference Number: 3.2.1.1

158

(I0S_DPM_INSTRUCTIONS)
C o)
C | OP_CODE_TYPE)
C IIOS_SHORT_INSTRUCI'ION)
(I0S_CMPND_INSTRUCTION)
(I\ IOS_INSTRUCTION)
J

Software Specification Reference Number: 3.2.1.2

159

IOS_PROGRAMS

(NODE_CHAIN_HEADER_TYPE)
|
(NODE_TRANSACTION_TYPE)

I
@ODE_TRANSACTION_ARRAY_TYP@

(INIT_AND_TEST_PROGRAM_TYPE)

(NODE_CHAIN_PROGRAM_TYPE)

|

(' END_OF_CHAIN_PROGRAM_TYPE)
I

C IOS_IDLE_PROGRAM_TYPE)

L

Software Specification Reference Number: 3.2. 1.2

160

I0S_DPM_MEMORY

IOS_DPM_ADDR

SEMI_DPM_ADDR

SEMI_DPM_SELECT_TYPE

BUS_ADDR_BITS

CHANNEL_SELECTION_ARRAY
IOS_TABLE_TYPE

LONG_DPM_ADDR

DPM_ADDR_RECORD
DPM_ADDR_TABLE_TYPE

C

C

C

C

@ I0S_SELECT_TYPE
C

C

C

C

C

JuUuUuuUuUuUUUU U

DPM_ADDR
RELATIVE_DPM_ADDR

IOS_SELECT_TABLE >

DPM_ADDR_TABLE >

Software Specification Reference Number: 3.2.1.3

161

Subprogram: DPM_ADDR
Inputs: 10§
channels
dpm_partition
rel_addr
Outputs dpm address

The high addr byte field of dpm address record is cleared.

The bus field of dpm record is assigned the constant shared bus.
The ios field of dpm record is assigned the value of the ios parameter. |
The dpm_half field of record is assigned the
value of the dpm partition parameter.
The channel field of dpm record is assigned the
value of the chapnels parameter
The dpm_addr field of dpm record is asssigned the

value of the rel addr parameter

return the dpm address

Subprogram: REL_DPM_ADDR
Inputs: system address
Outputs: relative dpm address

for < each CBA bit >

| Clear_the bit
7?7 Are we using the upper DPM memory ??
n o yes

Set _high order bit of 12 bit address field.
Clear bit 15
(the bit that discriminates between lower and upper memory)
return the low order word.

Software Specification Reference Number: 3.2.1.3

162

I0S_DPM_MAP

DPM_RECORD)
DPM_ACESS)
INIT_IOS_DPM

INIT_TEST_IOS_DPM

INIT_NODE_IO_RECORDS

INIT_TEST_NODE_IO_RECORDS
' ,

Software Specification Reference Number: 3.2.1.4

163

Subprogram: INIT_NODE_IO_RECORDS
Inputs network identifier
channel
Outputs: initialize status collection output transactions

in 1 nd r link from the local database.
for < each node in the network >
Generate a node status command,

nitializ k with _the n mmand

Initialize the output byte count for the configure nodes transaction
Initialize the output byte count for the status transaction.
Branch from the last transaction to end of chain program.

Subprogram: INIT_TEST_NODE_IO_RECORDS
Inputs: network identifier
channel
Outputs: initialize ios test input and output transactions

Obtain topology and root link data from the local database.
! nfigur mman isable all ports in root node.
Initialize the first transaction with the above command. |
Generate the configure command to enable root link port for 1 time.
Initialize the second transaction with the above command.

Software Specification Reference Number: 3.2.1.4

164

Subprogram: INIT_IOS_DPM

Inputs: dpm_ptr

Outputs: initializes ios, and the status collection and
reconfiguration programs

Initialize the interface command register.

Zero dpm_(non-register area).

Initialize the solicited chain pointer.

Initialize the unsolicited chain pointer to 1os idle program.

Initialize timer Iimit register by disabling timer.

Initialize _poll register number 1.

Disable hdlc autoflag mode.

Disable hdlc for transmission and reception.

Initialize _end of chain program.

Initialize 10s idle program.

Initialize node status program header.

for < the number of node transactions >

Imtialize node transaction instructions.

7?7 Is this the last node transaction ??

no Y€S

Branch to next transacton. Branch to eoc program.

Initialize node config program header.

for < the number of node transactions >

Initialize node transaction instructions.

7?7 Is this the last node transaction 77

no yes

‘Branch to next transacton. Branch to eoc program.

Subprogram: INIT_TEST_IOS_DPM
Inputs: dpm_ptr :
Outputs: initialize ios test program

Initialize the header of the test program.

Initialize the first transaction instructions.

Initialize _byte count of test input data to a non-zero value.

Initialize the second transaction instructions.

Software Specification Reference Number: 3.2.1.4

165

I/0O Sequencer/Dual Ported Memory Map

REGION FUNCTION , ADDRESS
0000-001F HARDWARE REGISTERS: 0000

Solicited Chain Ptr-R/W (Hi byte) 0001

Solicited Chain Ptr-R/W (Lo byte) 0003

Unsolicited Chain Ptr-R/W (Hi byte) 0004

Unsolicited Chain Ptr-R/W (Lo byte) 0005

Unused) 0006

Chain Status Register (CSR)-R 0007

Interface Command Register (ICR)-W 0008

Interface Status Register (ISR)-R 0009

Timer Limit Register (TLR)-W 0010

"Poll Register # 1 (PR1)-W 0011

Poll Register # 2 (PR2)-W 0012

Time-R 0013

Reserved ' 0014

Reserved 0015

HDLC Control Register 1 (CR1)-R/W 0016

HDLC Control Register 2 (CR2)-R/W 0017

HDLC Control Register 3 (CR3)-R/W 0018

HDLC Receiver Holding Register (RHR)-R 0019

Address Register (AR)-W 001A

HDLC Interrupt Register (IR)-R 001B

Transmit Holding Register (THR) 001C

HDLC Status Register (SR)-R 001D

Reserved - 001E

Reserved 001F
0030-003F CHAIN STATUS
0040-00FF INIT AND TEST PROGRAM
0100-01FF INIT AND TEST DATA
0200-057F NODE STATUS CHAIN
0600-09FF NODE CONFIGURATION CHAIN
0A00-A7F OUTPUT RECORDS FOR NODE STATUS CHAIN
0A80-0AFF OUTPUT RECORDS FOR NODE CONFIGURATION CHAIN
0B00-0C7F INPUT RECORDS FROM NQDE STATUS CHAIN -
0C80-O0DFF INPUT RECORDS FROM NODE CONFIGURATION CHAIN
0EQ0-OE7F UNSOLICITED INPUT DATA BUFFFER
OE80-OEFF END OF CHAIN PROGRAM
OF00-OFFF UNSOLICITED CHAIN PROGRAM--KEEPS IOS IN IDLE
1NNN_1RER

TISER CHAING AND DATA

Software Specification Reference Number: 3.2.1.4

166

IOSS_UTILITIES

VALID_SUM_CHECK

READ_ISR

" RESIDUE_BIT_COUNT

SET_IOS_PRIO

VOTED_OUTPUT

Software Specification Reference Number: 3.2.1.5

167

Subprogram: VOTED_OUTPUT
Inputs: value

address
Outputs: none

Perform a from all exchange on value.

Write voted value to address

Subprogram: VALID_SUM_CHECK

Inputs: Dbyte_ptr
byte_count

Qutputs: _boolean flag

Temp_sum is assigned a zero.

for < the number of bytes >

Temp sum is assigned temp sum plus the next byte

?? Is temp_sum less than or equal to modulus ??

no yes

Subtract modulus from temp_sum.

77 Is temp_sum equal to zero 77
no yes

retum a FALSE return a TRUE

Subprogram: RESIDUE_BIT_COUNT
Inputs: status register

Outputs: number of residue bits

The status register is converted into a hdlc_cr3 type.
return the residue bit count field of cr3.

Subprogram: SET_IOS_POLL_PRIO
Inputs: prio
Outpus: ios instruction

The level field of PR2 is set to ios _poll level.
The prio field of PR2 is set to the passed in prio.
The instruction is set up.
return the 1nstruction

Subprogram: READ_ISR
Inputs: none

Outputs: value of the interface status register

Read the location addressed as the ICR

Type cast this value as interface status register type

Return converted value

Software Specification Reference Number: 3.2.1.5

168

—

TOSS_INITIALIZATION

N\

INIT_AND_TEST_IOSS

RESTORE_IOSS

\

J

Software Specification Reference Number: 3.2.2

169

Subprogram: INIT_AND_TEST_IOSS

Inputs: interface status
active
Outputs: none
for < each network identifier >
7?7 Is this network connected to my gpc ??
no yes

Read the network status from 1i/o network status

Stop the 10s

Perform the dpm address line test

Perform the dpm memory read/write test

Perform the network interface self test

7?7 Are there any non-failed ios's

no YeES

Set active to TRUE

Write update interface status to IO network status

Subprogram: RESTORE_IOSS

Inputs: root links

dpm pointer
Outputs: channel to be restored

updated status collection chain

initialized 1ios

for < each network identifier >
?7? Is this network connected to my gpc ??
no yes

Retrieve the root links from the local database

for < each root link that is connected to channel to be restored >

Initialize the registers and program chains

Initialize the node i/o. data

update node status collection program

Software Specification Reference Number: 3.2.2

170

ou []

¢, PI[EAUI ISO UTeyd [euy i/ Fok

ou

{{, 199110JUl SSIIppE opou /, Sk

ou

G, _PHEAUT WnsydY) g S3K

ou

{,¢ 1091100Ul JUNOJ 11q [enpIsai ;7 3%

ou

¢¢ STOITS TOOTOId Y TOH TR

ou

¢, 1091100UT JUN0Y 9JAq Jndul ;7

S9A

ou

., H0d JOOJ UI JOI3 UOSSIuSued] ;7

S9A

ou

GG 11e] 15371 Jnoaw ;¢

ou

{{, 9PpOU 1001 Ul JOLI9 UOSSIWSUeN ;7

SIA

ou

S9A

{4 Y31y uo yonis 193 st ;i

ou

S9A

10119 oYy
o1 pue
Sot pojrey
sneis
aoeJId1Ul
o

o4 19591 O1 18] 189 (¢

] Yiew

ou

SAA

{{_919]dwod 1ou weidoid SOt g

[ouueyod
pailey
snieils
9orjJI91Ul
oyl
jiew

ou

LY

i, 1591 oyl Juunp |iej [ouueyd pid i

wdp wWoly iSO jeulj ‘elep 159 'JST ‘ISD peIY

919]duiod 0] ureyd I0j Iem

uieyd 159) JjoS Sor uny

13199eq

oqissod 2J[qesip pue Jpou 1001 Jjo Inys 01 [jod moyia. ureyd uny

[ouueyd
pajtey
sniels
2ovJI01UI
2yl
Yiew

ou

S9A

ii_PAIej [ouueyd uodal JIad DdD $20Q

(8

< Spuueyd jo roqunu Yyl > IOj

SN _szifenituf

quou

snjeisTooeyIdUIL

191IU3p1
LSH)”418S HOVIYILINI TAOMLAN

yiomiou.

:sindinQ

;sinduj
:wesdordgng

3.2.2,3.232

Software Specification Reference Number

171

(

IOS_MEMORY_TESTS

\

PASS_DPM_WORD_TEST

PASS_DPM_BLOCK_TEST

DPM_MEM_RW_TEST

. DPM_ADDR_LINE_TEST

CHANNEL, OK

IOS_IN_BACKPLANE

Software Specification Reference Number: 3.2.3.1

172

Subprogram: PASS_DPM_WORD_TEST

Inputs: network identifier
channel
Outputs: boolean flag
Store the word to be tested in a temporv variable
Fill the word with pattem 1
?? Does the word contain pattern 1 ?7
no yes
log an Fill the word with pattern 2
error 77 Does the word contain pattern 2 77
failed no . yes
pattern restore the word restore the word
test log an error message - calculate the offset for
restore pattern_test the next call to this routine
the word return a FALSE return 2 TRUE
return
a FALSE

Subprogram: PASS_DPM_BLOCK_TEST

Inputs:

(o TTY Tr Ty
VULPU&O-

network

channel

identifier

start address
end address

.
[SAVAVI LN YY)

fln~
1i1ag

Store _the start and end addresses in a temporv variable

77 Is the start address greater than or equal to the end address ??

yes no
log an Ensure that the start and end adresses are divisable by two
error for < the number of words >
message Store the current word in a tempory variable
invalid Fill the current word with pattern 1
address ?? Does the current word contain pattern 1 77
range no ycs
return{ log an Fill the current word with pattern 2
aTRUE| error [?? Does the current word contain pattern 2 77
failed yes no
pattern restore the word restore the word
test return a TRUE log an error
return failed pattern test
a FALSE return a FALSE

Software Specification Reference Number: 3.2.3.1

173

Subprogram: DPM_MEM_RW_TEST
Inputs: network 1dentifier
Outputs: interface status
interface status
Write test pattern 1 into memory

Verity with test pattern 1

Write test pattern Z Into memory

Verify with test pattern 2

Subprogram: WRITE
Inputs: test
Outputs: none

pattern

Write

‘test pattern in_ lower partition of memory

Write test pattern in upper partition of memory
Subprogram: VERIFY
Inputs: test pattern
Outputs: none
for < the number of channels >
7?7 Is the interface status of this channel ok 77
no . yes
7?7 Has the channel failed according to the GPCFDIR ??
yes . n o
log an Initialize failure to FALSE
error for < each location in the lower partition of memory >
Channel} 7?7 Does the pattern match the pattern expected ??
failed ves n o -
before Set _failure to TRUE
test. Save the address where the failure occured
mark 7?7 Did the channel fail ??
inter- no yes
face log an error message
status channel failed after test
failed mark interface status failed channel
channel exit
for < each location the upper partition of memory >
: ?7? Does the pattern match the pattern expected ??
{ yes no
Set failure to TRUE
Save the address where the failure occured
7?7 Did the channel fail ??
no yes
log an error message log an error message
10S failed channel failed after tcst.
mark interface status mark interface status
failed 10S failed channel
exit

Software Specification Reference Number: 3.2.3.1

174

Subprogram: DPM_ADDR_LINE_TEST

Inputs: network identifier
interface status

Outputs: interface status

Test _with normal pattern by:
Write pattern to corresponding lower memory partition location
Write pattern to corresponding upper memory partition location
Read back the pattern from each channel by:
for < each channel >
?? Is the interface status of this channel ok 17
no yes
?? Has the channel failed according to the GPC_FDIR ??
yes n o
log an Initialize failure to FALSE
error for < each location_in_the lower partition of memory >
Channel ?? Does the pattern match the pattern expected ?7
failed vey no
before Set failure to TRUE
test. Save the address where the failure occured and exit
mark for < each location in the upper partition of memory >
inter- ?? Does the pattern match the pattern expected 27
face yes no .
status Set failure to TRUE
failed | | [Save the address where the failure occured and exit
channel ?? Does Failure equal TRUE ??
no yes
7? Did the channel fail ??
no yes
log an error log an error
IQS Failed Channel Failed After Test.
mark interface status mark interface status
failed I10S failed channel

Software Specification Reference Number: 3.2.3.1

175

Subprogram: DPM_ADDR_LINE_TEST (Continued)
Inputs: npetwork identifier

interface status
Outputs: interface status

Test with juxtaposed pattern by::

Write pattern to corresponding lower memory partition
location with juxtaposed bytes.

Write pattern to corresponding upper memory partition
location with juxtaposed bytes.

Read back the pattern from each channel by:

for < each channel >

77 Is the 1nterface status of this channel’ ok 7?

no ycs
77 Has the channel failed according to the GPC_FDIR ??
yes n o
log an Initialize failure to FALSE
error for < each location in the lower partition of memory >
message 77 Does the pattern match the pattern expected 77
Channell [yeSs n o
failed Set_failure to TRUE
before Save the address where- the failure occured and exit
test. for < each location in the upper partition of memory >
mark 77 Does the pattern match the pattern expected ??
inter- yes no
face _Set_failure to TRUE
status Save the address where the failure occured and exit
failed ?? Does Failure equal TRUE ??
channell no yes
7? Did the channel fail ??
no yes
log an error log an error
IOS Failed " Channel Failed After Test.
mark interface status mark 1nterface status
failed 10S failed channel

Software Specification Reference Number: 3.2.3.1

176

Subprogram: CHANNEL_OK
' channel

identifier

Inputs:
Outputs: boolean flag
?7? case < channel identifier > ??
channel A channel B channel C
transmit pattern 1 transmit pattern 1 transmit pattern 1
from A from B from C

assign check
exchanged value

assign check
exchanged value

assign check
exchanged value

22 Does_check equal pattern 1 27

no yes
retur 2?7 _case < channel identilfier > 2?
FALSE channel A channel B _channel C
fransmit pattern 2 transmit pattern 2 transmit pattern 2
from A from B from C
assign check assign check assign check
exchange value exchange value exchange value
2?2 Does check equal pattern 2 ??
no yes
return a FALSE retum a TRUE

Subprogram: I0S IN BACKPLANE

Inputs: network
Outputs: none

identifier .

Write _a pattern to the solicited chain pointer of the I0S

For < each root link in the network >

?? Does the pattern match the pattern written ?°7

es

no

The ios is deemed unreachable by the FTP and the error is logged

The interface status of the ios is marked failed ios

Software Specification Reference Number: 3.2.3.1

Software Specification Reference Number: 3.2.4

177

SOI
uoljoesURI} 131q9qeq pajiejJ
oed woly 110doas 110dau
eIEp pue JOI1d 70113
snels 1319qeq 1037159] 301 80]
$59001 1red ou §9%
o% 53R AN ST TEYT ugu_m_ﬁ_ouo:_
{{ UB1Y uo omg i, SOI peq AM onp aInjiey S| (i uayMm .hu_nnmn
o5 A 103 JO9yd 1e)
&4 19831 01 P3fIe} USD ¢ " SUTTqqeY [2uueyd
= 23 — b ST 11 9seD ul pajiey
10 P1019p 19[qqed © SEM (i so1 s dorg | 110493 | suurys
SIA ou TOTTS pajie}
(i 9dwod ureyd ;i wo_. 110d a1
. ou : ST 10112
i{ PPYOUASal u93q pue UONNIIXI UlRYd JuuLNp pI[ie] [SuuURYO NUlf 1001 SBH (| go]
oua S3K

40 1591 wioned xp e pafie) ¢,

qoueiq 9] 2101531 udyl 2 €lep oyl Ul peday
S19[dWo0 0] Uuleyo oyl 10j JIEm uoyl % UEIS uleqd JO oulll peal Jp Uolndaxd uieyd Hels

3IN03Xa 01 Uleyd 3y3 10J oWl wWnuwixew ouiwialoq

e pAIdIos dn 195 % dsy [eul) 183D

[duueyDd

Weis0id Q)] Sopou JINgIjuod uni 01 Idiuio
TAdUl pue Snieis JTWX P[0 Jeo[d pue jndino ainsijuo) opou O] Spuewiwiod woly ejep Adoy | Pa1ie]
WEISOIdUTeY JO_pud_Of UOOESUEIT JSe] WOl goueryq . 119¢.91
uonojdwod ureyd 1dje paioisal 9q 01 (UOHIJBSUERI) 1XJU 01) UOIOBSURI) 1SB| JO SSIIPPE Yduelq JAES NP E)
uondo uoluduUOod Aq PpIjedipul se [jod INOYIM IO ylim uml 0] uieyd dn 3138 .wo_
ou . S9A
{4 POIIR] YUlf 1001 3AIOB O} PIaIdduuod [duueyd ayr S| ¢

uodar uoneingijuod :sinding

uonndo uonudUO?

spuewwod uoneindijuod

yUI[1001 2JA1NOR
IDFNIUIPT JIOMIdU Off :sinduj

SAAON TINOIANOD :weidoidqng

Software Specification Reference Number: 3.2.4.1

178

3.24.1

179

SOI pIriej uwodar pue ioud 30j
524 ou pojre)
Li, AOWow SOI peq O] o0p JOIID 9UJ ST ¢q :
66 MO 1'peq 01 anp WS ié) uonoesuen
S9A ou 1 10d21
44, D313319p SI0U3_ 77 pue
ou §34 10119
4{, pOU WOIY wnsYIoyd pijeAy] ;/ —_ So;
ou SoA
74, ApOU UO JUNOI 11q INPISAI 1920 /. SOl
ou S9A pajiej
4 9pou uo s1ou Jreds oloid) TAH i 110daz pajie}
S9A ou JO119 |uotioesuelrl
.. AMJBA 1991109 SeY U0 9Ag // 80| Jlew so1
ou_ EY JO0IId pajiej
74, ANJBA [RINUIL SBY [[1IS PIIY] IUnod MNAY ;7 mo_ j1odou
ou S39K 10119
i{, P30I19z Wnod 21Aq ;7 301
ou X
(i Indino Suipuds usym p9o19919p JO.ID UOISSIWISuer) /;

< uoroesuer] yoead > 10j

wodor uwoneindiyuod :sinding
s19yoed Indur opou :sinduj

SNOILOVSNVIL HAGON WOY¥ VLVA ANV SNLV.LS SSTO0Yd ‘wesdoidgng

Software Specification Reference Number

IOSS_FOR_NET_MGR

NODE_COMMAND_ARRAY_RECORD)

NODE_RESPONSE_ARRAY_RECORD

CONFIG_CHAIN_REPORT

NODE_STATUS_RECORD

NODE_STATUS_ARRAY

STATUS_CHAIN_REPORT

Y YAYAYANAYS

BABBLER_REPORT

_/ U U U U Y

CONFIGURE_NODES

CONFIGURE_NODES_NO_LOG

COLLECT_NODE_STATUS

COLLECT_NODE_STATUS_NO_LOG

DESELECT_NODE_STATUS_TRANSACTION

SELECT_NODE_STATUS_TRANSACTION

UPDATE_NODE_STATUS_CHAIN

TEST_FOR_BABBLER

Software Specification Reference Number: 3.2.4

180

SOI
uonoesuen 191qqeq pajiey
yoeo woiy 110dai 1iodas |
elep pue 10119 10119
snjels 1919qeq~ 1057159} 8o] 801
$S9001J 1eD ou R]
ou [S9A o, Kouow BD_M_.W%%E
{4 Y81y uo yomg i¢ SOI Peq O1 oNp NI} SI &6 hioym 191qqeq
= 537 10J }o0yd [[BD
¢ 19831 01 pIfrey ¥SO (¢ s5T——] SUITqqeq Jouueyo
ou . —] st oseo mr | pafreg
&6 PN Is[qqeqg © SeEM ((SOl s doig |110dax [ouuey?d
53k ou o077 | partey
i 99pdwod ureyo ¢ _ mo_. 110da1
ou > <h JOXIID
i(, PYSUASAl U22q PUE UONNIIXS UIBYD SULINP pajie) [QUUBYD JUI[1001 SEH {g soj
ou SEXS
(¢ 1591 waned xp e paie) g
USUEIq JyJ I0ISal U3yl 3 CIep 3ql ul pedy)

919[dwI0d 0] UTE(O oY) 10J 1ieM Uay) 2y 1els uleyd JO oWil peal 2y UOIINJOXd UIeyo WeI§

JINJ3X3 01 uleyd oyl Joj Juwil} wnwixew ulwlIalog

el I [Juos U U0 _UIEq _PAII0s dn BS ¥ 950 [PUY Tey JIPuueyo
ndut pue snje)s WX PO IeJ[O pue IndIn0 JINZYUOd IPOU 0] SpUBWWIOD WOI] eiep Ado) pajrej
WEIS0Id _UIBd JO pus O] UOIJesuel] J5e] WOI] (oueig 110d o1
UOIIO[dWO) UIeyd JJ)JE P310iSal 9 01 (UOTIJBSURS) IXJU O]) UOIIJESUBI) 1SB| JO SSIIPPE YOUBIq JAES 10119
uorldo _uonuduod _AQ patedipul se qjod InOyNm I0 ynm unl 0} uiegyd dn 319¢ 30]
ou S9A
¢¢ P31 JUI[1001 JAII0E 01 PI1JdUUOD [duueyd IY) S[¢
1odos uworeindiyuod :sinding
uondo uonuauod
spuewwod uoneindyuod
YUl 1001 9AIOE
laynuapr jIomidu o/t :sinduy

SHAON TANDIANOD :weioidqng

Software Specification Reference Number: 3.2.4.1

181

punoj 12jqqeq & uoda1 pue Jjoud 30]
S9A ou punoj
¢, UOISSTWISUEI} 93essow Juunp pa1d21ap jjod 10 jjod Juunp pIAIdAI 11q eleq (i, 191qqeq
S94A ou e uodal
(i UONUSIUOD Ylim PaIndaxe ureyd (¢ 10119 80]
ou SoA

i¢ uoIsstwsues) a8essow Juunp PpaA1dddl 11q BIleq (|

de[j uedjooq :sindinQ

1S9 [eu

1J :sinduj

FLATINOD NIVHO NAHM gdlDOd1dd ya1d4avd ‘weidoidgng

SOI popiey uwodar pue 10110 30§

Y

ou

Alowow SQJ peq 01 anp unjie Sfg

SaA

i punol samqiey Auy ¢

SOI pa[iey e 1odas

SIA - ou

¢ 919]dWOd JOuU UONJESUEI) JO dNJeA Jeniul SP[OY 1Unod d14q 2 PIJ[dWOd UOIdeSURI) (|,

pajlej
110da1

SO1

<< UoI1desueI] yoed >> 10J

§OI

£o1qqeq
19 Jojjrrodaa

punoj

ou

S9A

4L dDS 3 opew JOU UIERYD PINIJI[OSUR O} YONMS JO DS 01 dpew 10u DO 01 yduelg (i

10119
o]

ou

SIA

{{ PaInNdax9 Mcmon [[11s puewrwod =OQ Sa1edIpul dOS (¢

ou

| FXS

19[qqeq Pa10913p 9130] 9A0QY (i

punoj 19jqqeq e uodos pue Josud 30f

FEY

ou

(¢ uolsstwsuesl eiep Suunp p9a1oalap [jod 1o
PIAIdO31 11q ®lep Jo ydig yonis snq 1o 919jdwoosut

ifod Suunp
fjod pardwane

S94A

ou

(i UONUIIUOD YNM PpIINIAXI uleyd

&6

ey uesjooq

189

feuy

:sindinQ
sindug

FLATINOINI NIVHO NAHM JF19vE JOd JDFHD ‘weidoidqng

Software Specification Reference Number: 3.2.4.1

182

SOI paqiejy uodar pue 10119 30|
oA ou pajiey
L4, AIOWAW SOI peq 07 oup JOL3 34T 5] ¢ :
66 I peq O} onp Ul ST ¢ nonoesuel)
sak ou uodas
{4, P139313p SI01Id pue
ou s34 10119
£, 9pOou WOl wWnsyIYD prjeAy] /j/ 801
ou S9A
/. 9POU UO JUNOD 11q INPISII 1DILI0IU] /7 N0 |
ou $9A pajiej
{{, dpou uo s10119 |10 0101d HTAH il 110dax| pa3fie)
-S9A ou TO1193 |uorioesuell
{4 ANIBA 1021109 Sey Junod g /. 801 Jyiew SOt
ou SOA JT0I119 pajie]
74, ON[BA Je1IUl SeY [[1IS PId1] JUN0Dd NAY /. goj J1odai
ou . $3K 10119
i P2019Z unod 4q i 301
ou §3K
ii Indino Suipuds uoym P9199319p JOMIS UOISSTWSURI) /.

< uomnoesues} yoed > Iojf

uodas uonein8ijuod :sindingQ
sjoyoed indur opou :sinduj

SNOILOVSNVYL mnoz WO¥I VLVA ANV SNLVLS SSID0¥d ‘wesdoidgng

3.24.1

183

Software Specification Reference Number

SOl
uonos9|02d 131qqeq pojiej
sniels wolj 110daz 110daa
vlEp pue 10119 10119
smjels 12]1qQqeq~10J7159) goj o]
$590014 11eD ou 534
ou REEN 7. Kiowaw o “_wﬁwmn:ao
. M— :o : .. J B
66 Yoy ouo 1S &, A SOl vumuw~ 2np o+=:£ ST 66 SUTTIqeq MM__._MW_O
— = S1 11 ased ul :
4¢ 19891 01 pIie] ¥SD i soI sup doig |110dar [ouuey?d
SOA ou JTOITXTJ @0——6%
il 9dwod ureys g; 301 |jy10doz
ou sk 10119
{{ PAYOUASOI U99Q pUEB UOTINOIXI UIBYD SULNp PI[ie] [SUUBYD JUI] 100X SBH goj
ou S9A
(¢ 1591 waned xp e pafiey
BIEp 341 UT pesy '
33[AW0Od O ureyd d41 Joj 1Mem .
TIeTS UTeq3 JO W Pesy
TONNo9Xx3 uleyd Welg [ouueYd
JIM33X3 O] UIeqd 9yl 10j SWll whwixew Juiwidig partey
WeISoTd SO S3p0U SIMSJU0Y_UTd U7 _J3TUT0d UTeyy PIonos 135 110das
SO [euy JIes[n 0119
ndul_pue_snjels_Jiux_pjo_JIed|) 3o]
S9K

ou

{é POIIB] UI[1001 QANOE O0) PII1IdUUOD [dUURYD © S| (]

uodar uwoneingyyuod :sinding
juip 1001 9AfOR
I2IJIIUSPI JIOMIdU O/t

. SNLV.LS 1DIT10D :weidoidqng

:sindug

3422

Software Specification Reference Number

184

SO] pojrey wodax pue 1o So

SA ou
{{ AJowdw SO[peq O1 anp <injiej sy (/
S4A ou
{{ punoj sainjiey Auy
SOI pajiej & Lodal
SOA ou SOI
¢ 9191dwiod 10U uondesuel] IO pajie}
anjeA [enul SpPIOY unod 94q 110dax SOI
% pa1ojdwos uondesuen ;; 10119 pajiey |uonuoiuod
<< UONJesuel) Yyoes >> 10j 8o 110daa Suninp
ou Sak 10119 P219qeq poistwsuel)
¢4, dOS Speul JOU PINISTOSUN OF YONAS] 80| 110dou Surinp
ou s0K T0119 pa19qeq :ot:oazoL
¢, dDS dpeul 10U HOF OF [ouelqg [o] 110da1 Surinp
ou EL 10119 P21qqeq
¢ dJS SMAwod 10U PIp 8dS0T 4¢, o] 110dos
ou $94 101193
¢ UOTSSTWISURIT SULNp P2 [qqed (¢ 0]
ou s94
4, UoIssSIusuel 1 IO [[00 SUlnp PpoA3idal
] Nq eep 1o y3ry yoms snq o dojdwodur [jod pardwony i
Sey ueosjooq isindinQ
180 [euy :sinduj

NOLLOATIOD SNI VIS ONRNA yA19VE J0d JAOFHD ‘weifoidqng

3422

Software Specification Reference Number

185

SOI Ppajre} uodasr pue 1019 30]
SoA : ou pajiej
77 AJOWJW SOI Peq 0] onp JOLI oU) S] ¢4 :
66 1 peq p i St §6 uonoesuRI]
$94 ou uodax
77 Pa19dap SIOLD 7/ pue
ou s34 10119 _
7.4 9pOU WOJ] WNSYIYD PI[CAU] /. o]
ou SJA
;4 ApOu U0 JUNOI 11q INPISAI 123L100U] /.7 SOI
ou S24A pajie}
{4, opou uo sou [1es o1o1d JAH ¢ 110daa| parrey
Sok ou TO01190 juonioesuen
7 onjeA 3931103 Sey unod NLg 7/ 301 Jiew sol
ou S9A 10119 pajte}
;7 OnJeA [eHIUI SBY |JUS PJA1] UNod NAq ; 8o jiodaa
ou SIA 101192
{{ PA0I9Z JuUnod ANALQ i 301
ou S9A
;¢ ndino Surpuas udym Po19919p JOIIQ UOoISSiwsuel) /.
< uonoesueIl yoed > 10j
sak
L P2109[9S UuONDJeSURIl S| ¢ D U

uodor uwoneindyyuod :sinding
s1oyoed indur opou :sinduj

NOILOATIOO m?—.«.&m WO¥ VIVA ANV SNLVIS SSAD0Ud ‘weidordqng

186

Software Specification Reference Number: 3.4.2.2

Subprogram: DESELECT_NODE_STATUS_TRANSACTION

Inputs:

network identifier
node

Outputs: none

22 Is the node currently selected 22

O

YGCS

Set_the node seclection status to FALSE

Decrement the active node count

Set up pointer to all DPMs
connected to network

?7? Is a previous node selected ??

no yes
Branch from header Branch from the previous node
7? Is a subsequent node selected ??
no yes
Branch to end of chain Branch to that node

Subprogram: SELECT_NODE_STATUS_TRANSACTION
Inputs: network identifier

node
Outpute: none
2? Is the node currently deselected ??
ino yes
Set up pointer to all DPMs
connected 1o network _
2?7 Is a previous node selected 2?
no yes
Branch from header ' Branch from a previous node
to selected transaction to selected transaction
7?7 Is a subsequent node selected ??
no yes
Branch from selected transaction Branch to that node from selected
to end of chain : transaction
Set the node selecnon status to TRUE
Increment the active node count

Software Specification Reference Number: 3.4.2.3

187

Subprogram: UPDATE_NODE_STATUS_CHAIN
Inputs: network identifier
channel

Outputs: none

Set up pointers to the DPM designated by network identifier and channel

Set found to FALSE

for << each node >>

?? Is the status transaction for this node selected ??

yes

no

Set found to TRUE

7?7 Is this the first selected transaction ??

yes

no
Branch to this transaction Branch to this transaction
from header

from previous transaction

Set previous transaction to the current transaction

??Any transactions selected ?7?

no

yes

Branch from last selected transaction to end of chain program

Software Specification Reference Number: 3.4.2.3

188

Subprogram: TEST_FOR_BABBLER

Inputs: network identifier
root link
Outputs: report
77 Is the channel ok 77
no yes .
log Set up report to reflect the assumption that everything is ok
error Set up pointer 10 dpm and chain to run with poll
report Save branch_to address of Tast transaction (to next transaction)
failed to be restored after chain completion
channel

Branch from Header to'end of chain program

Clear final csr

Set up solicited chin pointer to run conlig_nodes 10s program

‘Waut tor chain to complete and read data and restore branch

7 Failed a dx pattern test 77
yes no
— 77 Is the root link 77 Channel Tailed during chain execution
channel bad 7? and has been resynched ??
. no yes yes . no
10g error log error 77 Is the chain complete 77
to non report failed no . yes
re-alignable channel 77 stuck Stop this 10s In
area and on ' case it's babbling
loop high 77 T ng the arror
forever no yes “77 babbler on the network 77
yes no
log error and log error and
report babbler report failed ios
detected

Softhiré Specification Reference Number: 3.4.2.4

189

(IO_NETWORK_MANAGER

ERROR_TYPE)

ERROR_REPORT

NETWORK STATETYPE)

START_IO_NETWORK_MANAGER

STOP_IO_NETWORK_MANAGER

REPAIR_NETWORK

GET_NETWORK_STATE

PUT_NETWORK_STATE

GET_ACIIVE_ROOT_LINK

PUT_ACTIVE_ROOT_LINK

LOAD_SPARE_LINK_TEST

1

EXECUTE_SPARE_LINK_TEST

UPLOAD_SPARE_LINK_TEST

RESTORE_FAILED_NODE_OR_FAILED_103

\.

Software Specification Reference Number: 3.1

190

IO_NETWORK_MANAGER (body)

(SPARE_TEST COMMANDS
l _

)
(SPARE_TEST_RECORD)
)
]

_ 1 '
(SPARE_LINK_TYPE
I
|

IS_LOCKED

L

|
NET_MAN_TASK_TYPE

Software Specification Reference Number: 3.1

s 191
<-4

Subprogram: IS_LOCKED
Inputs: ag
Outputs: boolean flag.

Test and Set the flag

7718 1lag already set!/

yes no

return FALSE return |RUE

Subprogram: STOP_IO_NETWORK_MANAGER
Inputs: i/o network identifier
Outputs: stop report

7? Is net connected to this gpc 7?7

no yes
Set stop 7? Is net manager started ??
report yes no
to net not Call the stop entry in the Set stop report to net
connected manager of this network manger not running
to this gpc Set mgr_running to FALSE log the event
log the event Set stop report.had errors to FALSE

Subprogram: STOP_IO__NETWORK__MANAGER
Inputs: i/o network identifier
Outputs: stop report

77 Is net connected to this gpc 7?

no yes
Set stop ____771s net manager started ?? . -
report yes no
to net not Call the stop entry in the Set stop report to net
connected manager of this network manger not running
to this gpc Set mgr_running to FALSE log the event
log the event Set stop report.had errors to FALSE

Subprogram: REPAIR_NETWORK
Inputs: i/o network identifier
Outputs: manager accepted call

Call repair entry 1n the manager ol this network

7T Eniry accepted 77

yes no

Set mgr accepted call io IRUE Set mgr accepied call to FALSE ™

Software Specification Reference Number: 3.1

192

Subprogram: RESTORE_FAILED_NODE_OR_FAILED IOS
Inputs: i/o network identifier :

restore information
Outputs: manager accepted call

Call restore failed part entry in the manager of this network
7? Entry accepted 7?7

no

yes
Set mgr accepted call to TRUE Set mgr accepted call to FALSE

Subprogram: GET_NETWORK_STATE
Inputs: i/o network identifier
Outputs: network state

| - Return the network state for this network]

Subprogram: PUT_NETWORK_STATE

Inputs: i/o network identifier
new state
Outputs: network state
[—Assign the new state to the network state for the this network |

Subprogram: GET_ACTIVE_ROOT_LINK

Inputs: i/o network identifier
Outputs: channel record of active root link
| Return the active root link for this network]

Subprogram: PUT_ACTIVE_ROOT_LINK

Inputs: i/o network identifier
new active root link
Outputs: active root link

| Assign the new active root link to the active root link for this network]

Subprogram: EXECUTE_SPARE_LINK_TEST
Inputs: i/o network identifier
Outputs: none

Set up pointer to dpm of this network
Set up solicited chain pointer to run config nodes ios program
Start chain execufion..
Wait tor chain to complete

Software Specification Reference Number: 3.1.2.4,3.1.2.5

193

Subprogram: LOAD SPARE LINK TEST
Inputs: I/O network identifier
Outputs chain loaded

7? Are spare cycle commands locked ??

yes

no

77 Was there an error in previous cycle ??

yes

no

77 Is the root link used for cycle com-
mands not equal to the active root link ??

yes

Chain not loaded
Unlock spare cycle commands

____no .
7?7 Channel is OK ?7?

yes no
Load Chain not loaded
spare Unlock spare
link cycle commands
cycle

command

Software Specificat’ o Reference Number: 3.1.2.4

194

Subprogram: UPLOAD SPARE LINK TEST
Inputs: 1/0 network identifier
Outputs:‘ Data from spare link cycle commands

Read CSR, ISR, final CSR, SCP from active I0S

Read data from transactions

Set spare input to TRUE

Set system error detected to TRUE

7?7 Channel OK 7?

no yes

7?7 Chain complete 77

no yes

77 Is confention state not equal to inacuve
or possession default or poll tx fail ??

yes no
77 Stuck on high 77
yes no
Set system emror 10 FALSE
for << each transaction >>
77 Xmit error 77
yes no
77 Is byte count equal to 1nit value 77
{ ves no
77 Is byte count not equal to
Set correct byte count ??
system yes no
erTor to 77 Recelver error 77
TRUE yes no
77 Is the number
of residue bits
not equal to 3 7?
yes no
Set status 77 Not valid
: of that sumcheck ??
Stop IOS Log error transaction es no
- to had error
Log error Exit

Software Specification Reference Number: 3.1.2.4

195

NET_MAN_TASK_TYPE

ENTRY START

ENTRY STOP

ENTRY CYCLE_SPARE_LINK

ENTRY RESTORE_FAILED_PART

UPDATE_INTERFACE_STATUS_AND_DPM_MEM

FAILED_CHANNEL_BACK_ONLINE

SELECT_LINK_TO_CYCLE

SETUP_NEXT_SPARE_LINK_CYCLE_COMMAND

PROCESS_SPARE_LINK_CYCLE_DATA

Software Specification Reference Number: 3.1

196

Subprogram: NET_MAN_TASK_TYPE
network identifier

Inputs:

Outputs:

i/o

network

network status
network status
network state

topology

Accept call to obtain i/o network identifirer

Read network topology from local database

Read initial network status

Zero error count in root link history

Update interface status

loop

Accept call to start

Grow_ network

Write _status

Set _up spare link cycling command

Unlock spare link cycling command

Set network state to in service

While << not stopped >>

Select one entry call

Accept Accept Accept Accept call to cycle
stop call call to call to spare links
Set repair restore Update interface status
network Call failed ?? Valid test data ??
state to repair part n o
out of network Call Process spare test data
servee restore ?? Any errors in test ??
Set network yes | 1L
stopped handle Setup next spare link
to TRUE errors cycle commands
Unlock spare link
cycle commands

Software Specification Reference Number: 3.1

197

Subprogram: RESTORE_NETWORK

Inputs: part to restore
Outputs: network status
7?7 Does network have active root link ??
no yes
Fast Case part to- restore
regrow Link Node

no

22 Is link a root link ??

Set node reconnected to FALSE

YES

for << each port

on_node >>

Set

Set status of port

7?7 Is adj element an active node ??

statug adj to link to idle no ves
of Set status of Try to enable link
ports| interface adj to 77 Link enabled ??
adj | link to available no yes
to |Set configuration Mark status
link |of port adj to link of ports active
to to_outboard Mark config
idle Reconfigure inboard or
root node outboard
Set,node recon-
nected to TRUE
: exit
7?7 Node Reconnected ??
no yes '
For << each port in node >>
case (Adjacent element)
Node (not GPC DIU
used to Set
reconnect) interface
7? Is node active ?7| status to
no ves available
Set status Set status of
of ports port to active
to idle Set config of
port to outboard
Set interface
status to available
Reconfigure node

Write status to network status

Update unreachable DIU list

Setup spare link cycle commands

Set network state to repaired

Software Specification Reference Number: 3.1.2.5

198

Subprogram: REPAIR_NETWORK

Updated unreachable DIUs

Inputs: none
Outputs: none
Case _repair_action
No active[Root link| Bad spare link Normal repair
root link| switch cvcled Update interface status and DPM |
?? Failed| Select {?? Last spare link in FALSE
channel |available was failed 2?2 Collect_node status
back |root link| no yes Call data analysis |
online?? Fast |Restore 22 Data errors detected 2?2
no __yes regrow| link yes no
Fast of [replaced Call Call error analysis |
Regrow networld by last |maintain 22 Errors detected 7?2 i
7 spare |networknd yes :
cycle Set 22 Is error transient??.
Mark change yes no
status of |in status Call Call
ports adj| to TRUE repair maintain
to failed transient| network
link as Set change
failed in status
to TRUE
22 _Change in_status ??
yes no
Set up new spare link Set network state to repaired
cycle commands
Write status to network status
Set _network state to repaired

Software Specification Reference Number: 3.1.2.3

199

Subprogram:

UPDATE_INTERFACE_STATUS_AND_DPM_MEM

Inputs: interface status
GPC FDIR status

Outputs: network status
updated DPM

Set change in interface status to false

for << each interface >>

?? Does interface status equal failed channel ??
yes no
?7 Is the channel ok 7 7? Does interface status equal available ??
no yes yes : n o
Set interface status 7? Is the channel not ok ??
to available yes no
Update status chain Set the interface status to failed channel
Set change in Set change in interface status to TRUE
interface :
status to TRUE

7?7 Is there a change in the interface status ??

no yes
Write the network status
Subprogram: FAILED_CHANNEL_BACK_ONLINE

Inputs: interface status
GPC FDIR status
Outputs: poolean flag

for << each interface >>

?? Does the interface status equal failed channel and

the channel is now ok ?7?

no yes
‘"L_Lgg the event the channel is back online
Return TRUE

Return FALSE

Software Specification Reference Number: 3.1.2,3.1.2.4

200

Subprogram: SELECT_LINK_TO_CYCLE
Inputs: network topology
network status

Outputs: spare link to test
Set selected to FALSE
?? Error In previous spare Iink test ?7
ves no
No While << link not selected >>
new Obtain_node and port to consider for spare link cycling
test 7?7 Does node equal start node & port equal start port ??
yes no
No link 77 Is node active and adjacent to an active node ??
to cycle yes no
Set 7? Is port idle ?? 7?7 Is node active and
selected no yes adjacent to a gpc ??
to TRUE ____Cycle this spare link] n o yes
Set selected to TRUE Switch root link
Set selected

to TRUE

Software Specification Reference Number: 3.1.2,3.1.2.4

Subprogram: SET_UP_NEXT_SPARE_LINK_CYCLE_COMMANDS

Inputs: spare to cycle
‘Outputs: spare link cycle commands
77 Is the link a root link ?7?
) yes
Determine target node

Determine spawning node
Set _number of commands equal to four
Set up spare link cycling commands to:
Disable inboard port of target node
Disable port of node under test adjacent to target node
Enable port ol spawning node adjacent to target node

Enable port of target node adjacent to spawning node

201

Subprogram: PROCESS_SPARE_LINK_CYCLE_DATA

Inputs: responses to spare cycle commands
Outputs: error flags

?? Is the link a root link ??

yes no
’ 7? System error detected ??
y¢s no
Set 2?7 Nommal response pattern ??
re.grow YES nQ
flag | Update 77 Is it a bad link 2?
status YESs no
and | Set recover 7? Is there no response from
config-| spare link all transactions or
uration| test flag, response from all 77
and save ves no
port/node to Set spare link | Set
be recovered error flag to regrow
call maintain| flag
on next
repair call

Software Specification Reference Number: 3.1.2.4

202

(NETWORK_GROWTH

(__ GPC_SUBSCRIBER RECORD)
1

(DIU_SUBSCRIBER_RECORD)
| .
GROW NETWORK

GROW_NETWORK_ASSUMING _
NO_FAILURES_DURING_GROWTH
l
RUN_DIAGNOSTIC_CHECK
I
GROW_TO_ROOT_NODE

ADD_REMAINING_NODES
|

AT\T\ CDADT DNNYT T AT QO I
ML LML INNUAJS X A1 NI l

ADD_REMOTE__GPCS
1

ADD_DIUS

RESET_STATUS
~

Software Specification Reference Number: 3.1.1

203

Subprogram: GROW_NETWORK

Inputs: I/0 Network Interface
Network Topology
Root Links
Node Configuration
Network Status
Current Channel
Fast Grow Flag

Outputs: Node Configuration
Network Status
Current Channel

Grow_Network_Assuming_No_Failures_During_Growth

Monitor_Network

7?7 Did monitor chain find faults 7?7

no yes
7? Has growth reached max tries ??
no ' yes
Loop Back Set node
to status for
Grow_Network_Assuming_No_Failures_During_Growth all no.des
to failed

Subprogram: RESET_STATUS
Inputs: Network Status
Node Configuration

Outputs: Network Status
Node Configuration

Set status of all nodes to idle

Set status of all ports to idle

Set all ports in all nodes in node configuration to idleport

Network is not active

Software Specification Reference Number: 3.1.1

204

Subprogram: GROW_NETWORK_ASSUMING_NO_FAILURE_DURING_GROWTH

Inputs:

Outputs:

i/o network identifier
network topology

root links

node configuration
network status
current channel
grow successful flag
fast grow flag

node configuation
network status
current channel
growth successful flag

Reset status.

Set _grow successful to FALSE.

Grow to root node.

7?7 Is root node active ??

VAZ)

Add remaining nodes

Set status of nonactive nodes to failed

Add spare root links

Add_dius

Add. remote gpcs

Set Grow successful to TRUE

Software Specification Reference Number: 3.1.1

205

Subprogram: GROW_TO_ROOT_NODE
Inputs: i/o network identifier
root links
network topology
network status
node configuration
spawning queue
next entry
root node active flag
fast grow flag
Outputs: network status
node configuration
spawning queue
next entry
root node active flag
fast grow flag

Prioritize root links

Repeat until active root link found or no more root links to try

Repeat until no transmission errors or tries exceeds maxtries

Contention option 1S set to with contention

Configure node with 1 active port to root link

?? Transmission errors ??

no yes
exit Log the error
?? Babbler detected ??
no yes
Contention option is set to without contention

?? Transmission errors in last try ??

yes no

Disconnect | 7?7 Fast growth selected ??

root node yes no

and fail |77 At least 1 good outboard port ?? Perform diagnostics on
root port |no yes root _node

and 10S Initialize spawning queue 7?7 _Node passes diagnostics ??

with root node and set yes no
root node active to TRUE . Disconnect root node

Fail root node

Fail adj. ports

EFail 1OS

Software Specification Reference Number: 3.1.1.1

206

Subprogram: ADD_REMAINING_NODES

Inputs:. i/o network identifier

root links

network topology

network status

node configuration

spawning queue

next entry

network subscribers
. fast grow flag
Outputs: network status

node configuration

spawning queue

next entry

network subscribers

fast grow flag

for < each node in the spawning queue >
Select the spawning node fromthe spawning queue
for < each idle port >
Select a 1dle port on a spawning node to be a spawning port
T7'Is there an adj element 77
Ino yes
ves 77 Is the adj element a GPC 77
Add node no
and port 77 Is the adj element a DIU 77
to GPC list yes no
Add node 77 Is the adjacent node idle ?7?
and port yes
Enable link between spawning

1[0 DIU st

port and port on the adi node

7?7 Was the link enable sucessful ??

no yes
Fail Set spawning port active
spawning Set adj port active
port Update node configuration of
Fail adj spawning node and adj node
port 77 Fast grow selected ??
Disconnect no yes
adj node perform diagnostic

check on adj node
77 Pass diagnostics 77
no yes
Set adj node active
and add it to the

spawning queue

Software Specification Reference Number: 3.1.1.2

207

Outputs:

Subprogram: RUN_DIAGNOSTIC CHECK
Inputs:

node under test

i/o network identifier
network topology
inboard port of node under test
network configuration
current channel
network status

passed diagnostic test
network configuration
network status

passed diagnostic test

Set passed diagnostic check to TRUE

for < Each idle port in node under test >

7?7 Is the adjacent element an idle node 72

n o

ves

Enable link between test port
and port on adjacent node

7? Is the link successful ??

no

YES

Fail test
port, fail
port on
adj. node

Run test on adjacent node to
detect node transmitting when disabled.

77 Does the adj. node transmit when disabled 72

yes no

link.

Disconnect

Write 77 Does test node retransmit when disabled 2?

status no YES

failed

Set pass diagnostic
node

check to FALSE

for adj.
node

Disconn

link

exit

7?2 Passed diagnostic check ??

no

yes

return

Run test for talking out of turn on node
under test :

?? Does test node talk out of turm ??

no YEs

return Set passed diagnostic check to FALSE

Software Specification Reference Number: 3.1.1.3

208

Subprogram: NODE_TRANSMITS_WHEN_DISABLED

Inputs: node under test
port under test
Outputs: boolean flag

Configure node under test to disable all ports

7?7 Does node respond ??

no YES

return| Log transmit when disabled error against this node

FALSE return TRUE

Subprogram: NODE_RETRANSMITS_WHEN_DISABLED
Inputs: node under test

port under test

inboard port

adjacent node

one shot port

Outputs: boolean flag

Configure node under test with only inboard port enabled

Configure one shot port on adjacent
node for one transmission only

Command node under test to return status

2? Response from adjacent node or valid fram seen from adj. node ??

no YES

return

Log retansmit when disabled. error against this node

FALSE return TRUE

Software Specification Reference Number: 3.1.1.3

209

dNYL 01 10 Sy[el 198

ANAL 01 N0 sy[el 12§

ANYL 01 MO syJel 19§

1591 Jopun opou
jsureSe Jou9 uwin)
Jo no Sunyrer S0

1591 Jopun opou
1suieSe Jom2 uwin)
Jo o Sunyrer o1

1S91 JIopun opou
jsuiede Jou19 wIny
Jo mo Suryel 30§

— ou 334 ou Sok $3K ou
7 PoTIIap 10119 AUE JISMN\ (0 T PIDJIAP SI0IIS AUC JI3M\ 14 [, PA1d3I3p SI0II3 AUE JI9M (4,
o))
apou pajiej apou 3[p1 apou dA1OE Japun
opou
(3uipuodsar apou jo snieis) ased
< opou wioij 9suodsal yoed > 10J
SOpou [[e WOIJ Sniels 1990
as[ej 01 InO syjel 19§
Seyy uesjooq - :sinding
uod pieoqui
191 I13pun Jpou :sinduj

NINL 40 LNO SYTV.L ddON :weidordqng

Software Specification Reference Number: 3.1.1.3

210

Subprogram: ADD_SPARE_ROOT_LINKS

Inputs: current channel
i/o network identifier
root links '
network topology
network status
node configuration
fast grow flag
Outputs: network status
node configuration
for < each root link in the network >
22 Is_the interface status equal to idle ??
n o yes
7? Is the root node active ??
ndg yes

Repeat _until root node connected or tries exceeds max tries

. Call configure node to enable root port of root node

7?7 Have any errors been detected ??

YES) no

Need to disconnect Root node connected

?? Need to disconnect ??

no yes

Pet status of root port to active

Call configure nodes to disable

Set configuration of root port

root port of root node

to_outboard

Fail root port

Set status of ios to available

Mark interface status failed ios

for < Each root link >

7? Is interface status available ??

n o yes
GPC FDIR says channel is failed
yes no
Set 7? Fast growth selected ??
interfacelyes no
states Collect_status using this root link
to 7?7 Are there any errors detected ??
failed no yes
channel Call configure nodes to

disable root port

Set interface status to
failed ios

Set configuration of
root part to idle port

Software Specification Reference Number: 3.1.1.4

211

Subprogram: ADD_REMOTE_GPCS

Inputs: current channel
i/o network identifier
network topology
GPC count
GPC list
network status
network configuration
Outputs: network status
network configuration
For < each GPC in list >
Target Node := Node Adjacent to GPC
Target Port := Port Adjacent to GPC
77 Is Target Node Active ?7?
Na yes

for .< the number of possible tries >
Call configure nodes to enable target port of target node
?? Errors detected ??

yes no
exit
?7? Reconfiguration successful ??
no yes
Call configure nodes Set target port status
to disable target port to active
of target node _Set target port
Set target port status configuration
to failed A to outboard

Set target port
configuration to
idle port

Software Specification Reference Number: 3.1.1.5

212

Subprogram: ADD_DIUS
Inputs: current channel
i/o network identifier
network topology
DIU count
DIU list
network status
network configuration
Outputs: network status
network configuration
“unreachable DIU list
For < each DIU in list >
Target Node := Node Adjacent to DIU
Target Port := Port Adjacent to DIU
?? Is Target Node Active ??
Q yes

for < the number of possible tries >

Call configure nodes to enable target port of target node

7?7 Errors detected ??

yes no
: exit
1?7 _Reconfiguration successful ??
no yes
Call configure nodes to dis- Set target port status
able target port of to active

target node Set target port
Set target port status configuration

to failed to outboard
Set target port configuration -

to idle port
Add DIU to unreachable
DIU list

Software Specification Reference Number: 3.1.1.6

213

NETWORK_FAULT_ANALYSIS

FAULT_TYPE

FAILED_NODE_LIST

FAILED_NODE_SET

FAULT_ANALYSIS_RECORD

ERROR_REPORT_RECORD

ERROR_CLASS

ERROR_TYPE_RECORD

C
C
C
C
(ANALYSIS_STATUS_TYPE
C
C
C
C

AN A AN S A

ERROR_SUMMARY_TYPE

ERROR_SUMMARY

ERROR_ANALYSIS

DATA_ANALYSIS

TRANSIENT_ANALYSIS

INBRD_PORT

ROOT_OF_FAILED_TREE

FAILED_TREE

Software Specification Reference Number: 3.1.2.2

214

Subprogram: ERROR_SUMMARY
Inputs: status report

Outputs: error summary

?? Does the status report indicate an interface failure 2?7
yes) no
Error [?? Does the status report indicate a babbler detected ??
summary| yes no
reports Error Set any to FALSE and all to TRUE
any summary for << each node >>
interface | reports 27 Is the node selected ??
errors any no yes
is TRUE | babbler 7? Did the node have a error ??
errors yes no
is TRUE Set any to TRUE Set all to FALSE
7? Is any FALSE 7?
yes - no
Error summary 7? Is all FALSE ??
reports any no ves
error is FALSE Error summary repor}s Error summary reports
any error is TRUE all errors is TRUE
Return the error summary :

Software Specification Reference Number: 3.1.2.2

215

Subprogram: ERROR_ANALYSIS

Inputs: i/o network identifier
current channel
node configuration
network topology
Outputs: error report record
Perform error summary on node status collection data
7?7 Have any errors been detected ??
n o yes
Set 7?7 Is error class an interface failure or all nodes failed ??
error yes ‘no
report|. Set 77 Is error class a babbler ?7?
to no error yes n o
errors| report Set Initialize error analysis variables:
Return to error Set failed node count to zero
error(indicate| report Set failed node set to empty
report] root to Set nodes visited to empty
link [indicate Verifiy_set is empty
failure | a Clear failed node list
and |babbler| for << each transaction in status collection chain >> |
current|Return 7?7 Is the transaction selected ?7?
channel| error no yes
Return | report 7? Did the transaction have an error ??
error no yes
report Increment failed node count
Add node to failed node set
Put node on_ failed node list
2? Does fajled node count equal 1 2?
yes no
. Error report Find root of failed tree
indicates 27 Root found 2?
single node no ves
failure and Add Root to verify set
identifies Zero recursion
failed node count
Return error 77 Is there
report a failed
tree??
no yes
7?7 Does verify
set equal
failed node
Error report set 77
indicates no yes
analysis Error Report
unsucessful shows link
failure and
associated
information
Return error report

Software Specification Reference Number: 3.1.2.2

216

Subprogram: DATA ANALYSIS

Inputs: I/0 network identifier
current channel
node configuration
network topology

Outputs: error report record

Clear bad port flag

Error report is set to no errors

For << each n T nse >>

?? Any transmission errors detected on this response ??

yey no

7?7 Did node status indicate a valid frame received

on an_idle port adiacent to a node 2?2

no YEs

?? Is this the only node found in this condition so far 7?

no Y€Ss

Raise undiagnosable error Set bad port flag

Assign fields of fault analysis

2? Is the bad port flag set 2?

no YES

Assign fields of error report

Return __error report

Subprogram: TRANSIENT ANALYSIS
Inputs: I/O0 network identifier
first report
node configuration
current channel
Outputs: error report
transient flag

Collect node status
?? Do _results of second status collection agree with results of first ??
yes 1o
Errors 22 Were any errors detected in ‘second status collection ??
are not no yes
kransient Errors Collect node status again
are - 7? Third status collection results agree with second ??
transient ves no
Errors are not transient Errors are transient

Software Specification Reference Number: 3.1.2.2

217

Subprogram: FAILED TREE

Inputs:
Outputs:

root
boolean flag

Increment recursion count

77 Has this node been visited or the maximum
recursion count been exceeded ??

yes

(0]

Raise
undiagnosable
error

Add node to nodes visited set

Far <<each partof this node >>

7? Is this port configured inboard oridle 7?

YES

(0]
N Is the element adiacent to this porta node 7?

no

7o)
Addthsnodepverifvset

7?1 this adiacent node in the failed node set 72

Yes

no

77 Failed tree of this
adjacent node 7?

yes

no

Return false

Renm false

Return true

Subprogram: ROOT OF FAILED TREE

Inputs:
Outputs:

none
node number type

Set found

to FALSE

for << each failed node in failed node list >>

Identify inboard port of this failed node

Find type of element adj to inboard port of failed node

?? Element adjacent to this port a node ??

no yes
7?7 Element adj to this 7?7 Response from this adj node had error ??
port a GPC 7?
no yes no yes
7? Only root found so far ??
yes no
Set root to current Raise
failed node undiagnosable
Set found to TRUE error
exit
7?2 Found a failed root ??
YCS no

Return value of root

Raise undiagnosable error

Software Specification Reference Number: 3.1.2.2

218

Subprogram: INBRD_PORT
Inputs: node_number
Outputs: port_number

for << each port >>

7?7 Is the node configuration for this port an inboard port ??

no YeEs

Set found to TRUE

Return the port

?7? Node has no inboard port ??

no ye€s

Log the error

Subprogram EQUAL_NET_STATUS

Inputs: first report
second report
Outputs: boolean flag
Initialize equal t0 FALSE _

7?7 Do the first and second reports both show an interface failure
and then have their attributed_to field set to the same value ?7
yes no
?? Do the first and second reports both not report an interface
failure and both report a babbler dectected and then both
have their detected field set to the same value""
yes no
7? Do the first and second records both
not report a babbler dectected ??

|
i
} ' equal
|

Set no] yes
for << each node >>
TltlgIE 7?7 Is the node for the first record selected and then

the had_error field of the first and second
record are not set to the same value??
no yes
Set equal to FALSE
l ‘ Exit the loop
: Return equal

Software Specification Reference Number: 3.1.2.2

219

MAINTAIN. NETWORK)

MAINTAIN_NETWORK

UPDATE_CONFIGURATION_TABLE

REPAIR_TRANSIENT

| J

Software Specification Reference Number: 3.1.2.3

220

[MAINTAIN_NETWORK (body)

(__BRANCH_CONNECTION_RECORD)
|

C ADJ_NODE_RECORD)
1

(BRANCH_RECORD D)
I

(_ BRANCH_RECORD_ARRAY)
1

HAS_ACTIVE_RL

1

INBRD_PORT

ADJ_NODE_REC

CANT_REACH_FAILED_NODE

1

- DISCONNECT_ROOT_LINK

RECONNECT

'RECONNECT_TO_BRANCH

ADD_NODES_TO_Q

REMOVE_NODE_FOR_TALKER_TEST

1

SWITCH_ROOT_LINK

REPAIR_LINK_OR_NODE_FAILURE

- REMOVE_FAILED_NODE_AND
- RECONNECT_TO_TREES

I
RECONNECT_OR_REMOVE_OR_REGROW

L

Software Specification Reference Number: 3.1.2.3

221

Subprogram: MAINTAIN_NETWORK
Inputs: network topology
i/o network identifier
current channel
error report
root links
root link history
network status
node configuration
Outputs: node configuration
network status
root link history
current channel

Initialize reconfig_successful to FALSE

Imtlahzc repaJr attempts to zero

while << rcconﬁgure is unsuccesful and repair_attempts
is less than max_repair_attempts >>

Increment repair_attempts
7?7 Error analysis successful ??
nQ yes
Regrow 7? Fault type is babbler ??
network yves no
Set Select 77 Fault type is no fault 7?7
recon- fast yes no '
figure grow | Set 27 Fault type is root link Failure 77
success | _option | recon- | ves no
to TRUE| Regrow| figure | Call 77 Fault type is link or node failure ??
network] success |Switch| _ves no
Set o TRUE root | Call |?? Fault type is talks out disabled port
recon- links | Repair| or bad address or configure data ??
figure link yes no
success or Call 7?7 Fault type iS Single
to TRUE node | Remove node failure 7?
failure node no yes
and Call Reconnect
reconnect or remove
to trees OF TEgTOW

7? Unexpected event during reconfiguration or network
hgg no active root link and regrowth not tried 2?

yes

Select fast erow option

Regrow network

Software Specification Reference Number: 3.1.2.3

222

Subprogram: REPAIR_TRANSIENT

Inputs:

Outputs:

changes
changes

No transient analysis logic in place yet hence no changes to net will occur

Set changes to FALSE

Subprogram: UPDATE CONFIGURATION TABLE

Inputs: network topology
first node
new inboard port
_ node configuration
Outputs: node configuration
Set done updating to FALSE
Set _current node to first node
while << not done updating >>
Set found inboard port to FALSE
for << each port in current node >> -
22 Is this port the inboard port of current node ??
no ' yes
Set found inboard port to TRUE
Set valug of old inboard port to inboard port
exit
h nfiguration of the new inboar it _of current node to _inboa
?7? Inboard port found in current node??
no ves_
Set done updating 2?7 Adjacent element is GPC ??
' to TRUE yes] no
: Set config of old Set config of old inboard
inboard port of port to outboard
current node to Using Network topology
idle port assign values to current
Set done updating node and its new inboard
to TRUE port

Software Specification Reference Number: 3.1.2.3

223

Subprogram: HAS_ACTIVE_RL
Inputs: interface status

Outputs: boolean flag

for << each channel >>

?7? Is the interface status of this channel set to active ??

YCS no

Return TRUE

Return FALSE

Subprogram: INBRD_PORT
Inputs: node number type

Outputs: port number type

for << each port in port number type >>

7?7 Is the configuration of this port inboard ??

no Y€S

Set found to TRUE

Retum the port

7?7 No mboard port was ftound ??

no yes

Log the error

Raise a constraint -error

Subprogram: ADJ_NODE_REC
Inputs: target node record
Outputs: adjacent node record

Look up the target node in the network topology

Return the node number and port number of the
node adjacent to this port of the target node

Subprogram: CANT_REACH_FAILED_NODE
Inputs: failed node
Outputs: boolean flag

for << each port >>

7?7 1Is the element adjacent to this port a node
and the status of the port active ?? -

no Y€S

Return TRUE

Return FALSE

Subprogram:DISCONNECT_ROOT_LINK
Inputs: root link to disconnect

Outputs: none

Set up command to root node to disable port facing IOS

Call configure_nodes with the no log option

Set the status of that root link to failed ios

Software Specification Reference Number: 3.1.2.3

224

Subprogram: RECONNECT TO BRANCH

Inputs: my branch
failed node set
root of failed tree
port facing this branch on root of failed tree
Outputs: result of reconnection
Set repair complete to false
Set branch reconnected to false
while << branch is not reconnected >>
77 Any nodes left to try ?7?
no yes
Select target node from branch
for << each port of target node >>
72 Is this port an idle port adjacent to an acitve node which
is not in the failed node set ??
no yes
Set spawning node to adjacent node
Set up command to spawning node to enable
port adjacent to target node
“Set up command 1o target node to enable
port adjacent to spawning node
Set up command to node at root of failed tree
to disable port adjacent to failed link
Select contention option for chain execution
Call configure nodes
7?7 Summarized errors in error report shows ?
Babbler Interface All Any No
Detected failure failed erTors €ITOors
Deselect contention option and retry once retry once
Summarize errors in second try
7? Error summary shows ??
No errors Babbler or error only Any other I/F
on root of failed tree error Error
Mark status of ports Disconnect root of failed Log
active tree from this branch event
Set config of target port | Set status of ports to failed Raise
to inboard Set configuration unex-
Set config of spawning |___of ports to idle port Disconnect | pected
port to outboard Reenable link between link between | event
Call update config table | spawning and target nodes target and during
Collect node status 77 Link enabled ?? spawning recon-
77 Any errors 7? yes no node figur-
" yes no Set status of ports to active Set status of | ation
Set repair Set contig of target ports to failed | attempt
complete port to inboard Set '
to TRUE Set config of spawning configuration
Set connection to port to outboard of ports
branch to TRUE Set connection to idleport
to branch to TRUE Log event

Software Specification Reference Number: 3.1.2.3

225

Subprogram: SWITCH_ROOT_LINK

Inputs: CITOT ICpOrts
Outputs: none

Set status of suspected root link to value inerror report (failed ios or failed channel)
77 Is status of suspected root link equal to failed ios ??
no yes
Count "spare” root links (a spare root link has available status)
Call disconnect root link & add 1 to root link history of failed root link
7?7 Any spare root links ??
no yes
77 Error report shows While << root link failure not fixed
failed channel ?? and spare root links left to try >>
no yes belect candidate root link from spares
TEZIOW for<<1to3>> Collect node status through this root link
net- wait for Update configuration table
work channel to reflect new root link
with repair Analyze node status information
fast 7? Any Generate local error report
grow channels 7?7 Analysis successful ??
option ok 7? no yes
Set ves no Raise 7?7 No errors detected ??
recon- update excep- yes no
figur status tion | Rootlink [77 Fault type is rootlink failure 77
Succes- chain unex- | failure yes no _
ful Set root pected | fixed set Tog Root link
to link event | to TRUE | multiple root | failure fixed
TRUE status during Set link failure set to TRUE
of recon- | Reconfig Mark root Assign active
restored figure | Successful link status to status of
channel setto TRUE| with value this root link
10 active Set status from local Assign this
Set of this eITor report root link
reconfig rootlink | 7? failed i0s to current
success to active in this root channel
to TRUE Set link 7?7 Asssign local
exit current {no yes error report
7?7 Reconfig- channel Call dis- to global
uration to this connect eITor Teport
Successful ?? root link this root Since
no yes link reconfigure
Regrow ~Increment | successful is
network rootlink | still FALSE
using fast history the maintain
grow of this procedure will
option root link loop again to
Set reconfig _ process this
successful k. new error
to TRUE information

Software Specification Reference Number: 3.1.2.3

226

Subprogram: RECONNECT (to target node)
target

failed node set
link enabled

Inputs:

Outputs:

Set link enabled to FALSE

for << each port in target node >>

7? Is this an idle port adjacent to node ??

no

Y€s

?? Is the adjacent node in
the failed node set 2?

YES

no

Try to enable link from

this port to adj node

~ 77 Link enabled 7?2

no

yes

to failed

Set status of ports

Set status of ports to active

Set node config of spawning
port to out board

Update config table starting
with target node and its
new inboard port

Set link enable
to TRUE .

exit

Subprogram: ADD NODES TO QUEUE

Inputs: next

Outputs:

entry

target queue

Set top to zero

Set _next _entry to one

while << top is not equal to next entry >>

Assign node at top of queue to current node

for << each port in current node >>

7? Is this an outboard port which is adjacent to a node ??

0

yes

Put this node in next entry slot

Increment _next_entry_by one

Increment top by one

227

Software Specification Reference Number: 3.1.2.3

Subprogram: REPAIR_LINK_OR_NODE_FAILURE
Inputs: none
Outputs: none

Disconnect link going to inboard port of failed root of failed tree

Mark port status records to reflect failed link

—

11 reconn in ir link his node via a_spare
7?7 New link to failed node found by reconnect ??

yes no

Set 7?7 Failed node count equal one ??

re- yes no
config| Deselect Initiglize variables to allow

suc- | this node reconnection via branch
cessful |__transaction Call add nodes to queue for each outboard
to TRUE|Mark status port connected to root of failed tree

of this Set new branch connected to TRUE & repair complete

node failed 1o FALSE & Set any not reconnected to TRUE ‘
?? Is failed | while << not repair complete and new branch

node a ‘ connected and any not reconnected >>

root node ?? 27 Is there another branch to trv_reconnection to 27
vyes Ino Yes no
Call Call_reconnect to brach for this branch
discon- 2?7 Connection to branch successful ??
nect yes - no

root Set new branch connected to TRU

link ?7? Root of failed tree reachable ??

Set yes no

re- Set Repair Remove nodes
config complete to TRUE in this

suc- Set any not branch from
cessful reconnected failed node
to TRUHE : to FALSE set

77 _Any_ branches not reconnected 22
yes no

Set status of nodes in these branches to failed
Deselect status transaction of these nodes
Set configuration of ports in these nodes to idle port
' 7?7 Are anv of these nodes root nodes ??
ves no
Mark status of interface connected to root node failed ios
Call disconnect root link using active IOS

22 Is _root of failed tree reconnected 2?7

ves no
Mark status of this node failed
Deselert_the status transaction of this node
Set conf.omation of ports in this node to idle port
22 Is this node a root node 27
no yes
Mark status of interface connected to this node as failed
Call disconnect root link using IOS adjacent to this node

Software Specification Reference Number: 3.1.2.3

228

Subprogram: REMOVE FAILED NODE AND RECONNECT TO TREES
Inputs: none

Outputs: none
22 Failed node jis active root node ?2?
no yes
Switch root links
Initiali i i nnecti I

Attempt to disconnect all outboard port links of failed node

Update status and configuration of ports

Set _new branch connected to TRUE

while << new branch connected >>

Set _new branch connected to FALSE

for << each unconnected branch >>

Select branch to reconnect

Call reconnect to branch

7? Reconnection successful ??

no yes

Disconnect this branch from failed node

Remove the active nodes in this branch
from set of isolated nodes

Set new branch connected to TREE

7? Any branches not reconnected ??

no - YES

Fail nodes in these branches

Set reconfiguration successful to TRUE

Subprogram: RECONNECT OR REMOVE OR REGROW
Inputs: none

Outputs: none

22 Failed node is active root node ??

no YeEs

Switch root link

Call remove failed node and reconnect to trees

Get status from presumably failed node

22 Babbler or interface failure or errors not detected 272

YCS no
Select for << each idle port >>
full Attempt_to reconnect failed node via this port
growth 2? Link enabled 7?7
option no yes
Regrow Update status and configuration records
‘Inetwork (these were marked failed and now
need to be set to active and
outboard respectively)
7? Node reconnected ??
yes no

Mark status of node failed

Set reconfiguration successful to TRUE

Software Specification Reference Number: 3.1.2.3

229

[NETWORK_MANAGER_UTILITIES

SPAWNING_QUEUE_INDEX)
SPAWNING_QUEUE_TYPE)
OPOODES)
PACKED_OPCODES)
NUMBER_OF RESIDUE_BITS)
— __PACKED_NUMBER_OF RESIDUE_BITS
PORT_STATE
PORT_ARRAY
PACKED_PORT_ARRAY
RESPONSE_SOURCE_TYPE
ERROR_CONDITION_TYPE
OPCODE_TYPE
PACKED_OPCODE_TYPE
CONFIGURATION_LIFETIME

_PACKED_CONFIGURATION_LIFETIME
RESET_STATUS_REGISTERS_TYPE
PORT_ENABLE_TYPE
PACKED_PORT_ENABLE_TYPE
NODE_MESSAGE_TYPE
(PACKED_NODE_MESSAGE_TYPE)

PORT_STATUS_ARRAY
(L_' NODE_RESPONSE_TYPE

ala'e
. b .

1

:

ﬁﬁﬁﬁmﬁmmm

mmq

uuuUuuuuuuubuu

N

PACKED_NODE_RESPONSE_TYPE
ENABLE_LINK
DISCONNECT

C
|
|
| WRITE_STATUS_FOR_FAILED_NODE
L PACK_NODE_MESSAGE
L UNPACK_NODE_RESPONSE
~ NODE_CONFIG_CMD

L STANDARD_MONITOR_FRAME
—

ey

Software Specification Reference Number: 3.1.2.3

230

Subprogram: ENABLE_LINK
Inputs: i/o network identifier
network topology
current channel
contention option
from_node
outboart port
to_node
inboard port
max tries
node configuration
link_enabled
chain report
Outputs: link_enabled
chain report

Set up commands for outboard and inboard ports

B;ma; um;] k g nabl gd gggg!s TRUE Qr tries exceeds max tries

fi n 0o_¢nable link

7? babbler dctected or transmlssmn errors 7?

yes no

Disconnect Test for babbier

to node and 7?7 Was the babbler detected ??

from node no ves

Set link enabled Disconnect to_node & from_node

Software Specification Reference Number: 3.1.3.1,3.1.3.3

231

Subprogram: DISCONNECT

Inputs: i/o network id
network topolo
node
from_node
outboard port
to_node
inboard port
current

entifier
gy

configuration

channel

contention option

Outputs: none

Set up a command to to node to disable inboard port

Set up a command to

from node to disable outboard port

Call configure nodes to send the commands

Subprogram: WRITE_STATUS_FOR_FAILED_NODE

network topology
‘ network status
| Outputs: network status
Set the node status to failed
for < each port >
Set the port status to failed
2?7 case adiacent element ??
my gpc channel . node others
| Set interface status of|Set the adj. port | null

adj. I0S to failed I0S

status to failed

Software Specification Reference Number: 3.1.3.1 3.1.3.3

232

Subprogram: NODE_CONFIGURATION_COMMAND
Inputs: configuration lifetime
node address

desired port configuration
Outputs: node message

Assign node address field of node message the value of ddress
Assign node field of opcode field of node message a value of reconfigure ports
Assign status message field of opcode field of node
message a value of status register
Assign _error field of opcode field of node message a value of valid
Assign residue bytes field of opcode field of node message a_value of three
Assign lifetime field of port enable field of node
message a_value of configuration lifetime
Assign clear status field of port enable field of node message a value of clear
For << each port >>
2?2 Is the desired port confiouration of this port idle nort 22
yes no
Tum corresponding port enable off Tum corresponding port enable on
Return node message

Subprogram: STANDARD_MONITOR_FRAME
Inputs: node address -
Outputs: node message

Assign node address field of node message the value of address
Assign _mode field of opcode field of node message the value of report status
Assign the status message field of opcode field

of node message the value of status register
Assign the residue bit field of opcode field of node message the value of three
Assign the lifetime field of port enable field of
node message the value of once only
Assign the clear status field of port enable
field of node message the value of clear
Assign_each port field of port enable field of node message the valuc of off

Return node message

Software Specification Reference Number: 3.1.3.2

233

Subprogram: CODED_NODE_ADDRESS
Inputs: node address
Outputs: encoded node address

Initialize _max value to 255

Return (max value minus node addresss)

Subprogram: MESSAGE_SUM_CHECK
Inputs: node message
Outputs: node check sum

Initialize temp sum to node address from node message

Add encoded address to temp sum

7?2 Is temp sum greater than or equal to modulus ??

n o yes

Subtract _modulus from temp sum

Add opcode to temp sum

7? Is temp sum greater than or equal to modulus ??

n o YES

Subtract modulus from temp sum

Add port enable to temp sum

2? Is temp sum greater than modulus ??

no _YES

Subtract modulus from temp sum

Return modulus minus temp sum

Subprogram: PACK_NODE_MESSAGE
Inputs: node message
Outputs: packed node message

Convert internal representation of fields of node message
to bit mapped representation required by node

Call message sum check to append check sum

Return packed representation of node message

Subprogram: UNPACK_NODE_RESPONSE

Inputs: packed node response
Outputs: node response

Convert bit mapped representation of fields of packed
node response to internal representation

Return internal representation of node response

Software Specification Reference Number: 3.1.3.2

234

5.0 CONCLUSIONS AND RECOMMENDATIONS

The Advanced Information Processing System (AIPS) Input/Output Network Software has
been designed, implemented and tested on the centralized configuration of the AIPS
engineering model. This network management software manipulates the large number of
possible interconnections between the circuit switched nodes to maximize the system's
overall reliability and survivability. The responsibilities of this software include the
following: initial growth of a network, establishing active paths to each functional node;
periodic testing of each node in order to determine if the node is accessible; detecting faults
in the network; periodic cycling of spare links in the network to ensure that they are fault
free; reconfiguring the network to isolate faulty components; and re-establishing
connections to nodes which have been repaired. It is composed of 19,994 lines of Ada
source code. The source code includes 8,604 Ada statements (which may take more than
one line) and comment statements. The source code and global variables use 370,748 bytes
of memory.

S.1 Testing Of Network Manager Software

Initial testing of the network management software was done by randomly injecting faults
- into the links, nodes, root nodes and IOSs. The network status display and error logs were
used to monitor these tests. The software correctly identified and reconfigured the network
in all tests. Performance and reliability metrics for the centralized AIPS system have not
been measured as yet. They need to be gathered and evaluated under fault free and
degraded conditions of the network.

5.2 Future Work

After the performance metrics are gathered and evaluated for the network hardware and
software, the timing or bandwidth bottlenecks will be uncovered. Additionally, there are
known areas where software performance can be improved. For example, the most time
consuming identification procedures are those that require a regrow of the network, such as
the identification of the faulty node when a node fails active. The babbler and the node
which responds out of turn are two examples of active node failures. The latter example, a
node which answers to an address other than its own, requires network regrowth with full
diagnostics. Other failures that use the regrowth with diagnostic testing algorithm for
identification and reconfiguration are those faults whose source is not 1dent1ﬁed during
periodic status collection.

If the fault is a babbler, the network is regrown without diagnostic testing since the
detection and isolation of a babbler does not require these tests. A babbler is an active fault
and includes a stuck on high condition detected by the IOS at its receiving interface to the
network. In the present algorithm, the cost of regrowing a network of N nodes in the
presence of a babbler is N + P chains, where P is the number of spare ports on the faulty

235

node that must be tried until a non-faulty one is found. A faster algorithm could be
designed which would reduce this cost in the case of networks that are either maximally
branching or fully linear. In the latter case a binary search could be used. The node in the
middle of the bus would have its outboard port disabled and the location of the babbler
would be deduced from the continued presence or absence of babbler symptoms after this
reconfiguration. For the maximally branching network, a similar search could be
conducted on each outboard branch of a node. If disabling the port which leads to a branch
eliminates the babbler's symptoms, then that port is the gateway to the branch of the
network containing the babbler. However, the network configuration may be a mix of
these two basic patterns. The cost of finding the babbler is then not only a function of the
number of chains necessary to identify and isolate the babbler, but also the cost of deciding
on which type of search to employ. The decision as to which algorithm is least expensive
depends on the number of nodes in the network. More analysis of the problem is needed to
make an informed choice and develop an algorithm that meets the performance and
reliability requirements of the system.

Regrowth with testing is performed in the cases where the network manager software is
unable to identify the type of fault or the faulty component. Examples of these are faults in
the switching logic which are configuration dependent and some types of the talk out of
turn faults. (In some cases, the talk out of turn node is identified by the manager and it is
simply removed from the network.) In the case where a talks out of turn node is not
identified by the manager, the time consuming regrowth with testing algorithm is used for
fault identification. If an identification algorithm were developed that could always
determine when a fault is due to a node responding out of turn, then the regrow with testing
algorithm would not be necessary for this type of failure. Instead, the manager could
respond with a simpler reconfiguration strategy. .

The use of the regrowth and other time consuming algorithms for fault diagnosis and repair
can require inordinate computational intensity which may take the network off-line for more
than one I/O cycle. This potential lack of availability might require a parallel network to
meet the performance and reliability requirements of the application. These adversities arise
primarily because the sender of a transmission cannot be identified with certainty, a relayer
of a transmission can mutate a message without certainty of detection, and a noisy node or
babbler cannot be identified without lengthy diagnosis and reconfiguration procedures. In
addition, unlike other CSDL-designed AIPS building blocks, the networks are not
Byzantine Resilient, nor can they be made so without massive network replication.
Therefore, they are not demonstrably resilient to malicious faults, so the network
validation process does not benefit from the theoretical rigor of th= Byzantine Resilience
approach to fault tolerance. An appropriate communication protocol might assist in
reducing the computational and communication overhead involved in diagnosing and
repairing network faults, and might also allow the construction of Byzantine Resilient
networks. To determine the feasibility of such an approach, a study is needed to examine
several potentially applicable authentication schemes and ascertain their computational and

236

communication overhead, probability of failure, and other performance measures.

Transient fault analysis is another area requiring further research and development. In
particular, it is difficult to distinguish between an intermittent failure and a transient. At
present, automatic retries of chains are used to identify transient faults, but nothing is done
for the intermittent fault, which will appear to the manager as a transient. To deal with
intermittent faults a system of demerits could be employed. When a fault is detected, but
does not reappear in the retry, a demerit could be charged to the hardware causing the error,
if that can be determined, or to the entire network if a more specific cause cannot be found.
If the demerit is assigned to the entire network and the network eventually falls below a
certain threshold, sections of the network could be taken off line, one at a time, in order to
isolate the fault. Another area requiring further research is determinin g the amount of time
to wait between retries. If the chain is retried immediately as in the present algorithm, a
transient of a long duration is declared a permanent fault. Since no recovery is attempted
until the faulty component is repaired, that resource is lost. Since 50 to 80 per cent of
faults are typically transients, the network fault detection algorithms need to be expanded to
include transient/intermittent fault analysis and tested with the actual hardware by
simulating intermittent and transient faults.

Networks are grown at initialization time from the network database. At present that
database is static. An algorithm should be developed to support a dynamic database. In
such a case the software could determine the actual physical network topology dynamically.
If a new network is connected after system startup, it then would be possible to add it to
the system with an operator command. A dynamic database would also allow a graceful
addition of new nodes and links to an existing network.

Finally, algorithms need to be developed for handling errors which are observed by one
site of a regional network, but not at the site hosting the Network Manager. This is
especially important for the Inter-Computer Network Manager. '

237

6.0

REFERENCES

J.H. Lala, A. Ray, R. Harper, "A Fault and Damage Tolerant Network for an
Advanced Transport Aircraft," American Automatic Control Conference, San Diego,
CA, June, 1984.

G. Nagle, "An Ada Implementation of the Network Manager for the Advanced
Information Processing System,” The First International Conference on Ada
Programming Language Applications for the NASA Space Station, Houston, TX,
June, 1986.

G. Booch, Software Engineering with Ada®, the Benjamin/Cummings Publishing
Co., Inc., Menlo Park, CA, 1983.

I. Nassi and B. Schneiderman, "Flowchart Techniques for Structured
Programming”, Department of Computer Science, State University of New York at
Stony Brook, New York, August, 1973.

PRECEDING PAGE BLANK NOT FILMED

239 PAGE_A3T INTENTIONALLE BLANK

APPENDIX A: GLOSSARY OF YO NETWORK TERMS

Network Hardware

Node: a circuit switching device with 5 ports which can each be independently enabled or
disabled. An enabled port retransmits the logical OR of all data which has been received by
any other enabled port. The retransmission is carried out with minimal delay, nominally
one half the period of the transmission clock.

Device Interface Unit. (DIU): The smallest unit addressable by an application on an I/O
network. DIUs may be single devices (such as sensors or actuators) or collections of such
devices.

IOP: /O Processor.

CP: Computational Processor.

GPC: General Purpose Computer consisting of an IOP, a CP, and their interfaces to I/O
and IC networks.

I/O Sequencer (IOS): A state machine whose function is to cdnduét the physical aspects of

communication on an I/O network for a GPC. The IOS communicates with one channel of .

a GPC by means of a Dual Ported Memory. The IOS executes a program which has been
stored in (DPM) by the IOP. Part of the DPM behaves as a set of control and status
registers for the IOS. Once a program has been stored in the DPM, communication between
the JIOS and GPC can be conducted by means of the control and status registers. It is
possible to store programs in the DPM for future execution and then in real time it is only
necessary to update the data required by these programs. Input data must be exchanged
across redundant channels for source congruency and output data must be voted to provide
fault masking. Each IOS is a simplex device which performs its function asynchronously
from other IOSs and from the GPC to which it is connected.

Network Interface: the hardware involved in the connection between a GPC and a network.
It consists of an IOS, 8 K bytes of dual ported memory, and a link (called the root link)
connecting the IOS to a network node (called the root node). '

I/O Network: a set of nodes and DIUs which are physically interconnected.

I/O Network Topology: The specific interconnections among the nodes, GPCs and DIUs in
an J/O Network.

Virtual Bus: A network whose nodes have been configured to allow communication
between a GPC and DIUs or nodes on that network to emulate communication on a serial
bus.

Network Classification

I/O Service: A logical organization imposed on I/O network use. A service may be
designated as Regional or Local.

Regional I/O Service: I/O activity conducted on a single I/O Network which is shared
among several GPCs. Since only one GPC may use the network at any given time, GPCs
must contend for use of the network.

Local I/O Service: I/O activity conducted on an I/O network which is used exclusively by
one GPC. If an I/O network which is part of a Local I/O Service is physically connected to
more than one GPC, exactly one of those GPCs will be included in the service at any given
time. A change in the GPC included in the service constitutes a function migration.

Redundant I/O Network: a set of I/O networks connected to the same GPC. Each network
in the set consists of a set of corresponding, redundant devices (sensors and effectors). It
is not required that these devices be interconnected by the same topology. To support
function migration, each network in the set may have corresponding connections to more
than one GPC. However, during normal operation, access to this set of networks is
reserved exclusively for one GPC.

Redundant I/O Service: A special form of Local I/O Service where /O activity is conducted
on a set of Redundant I/O Networks. This is the only type of service supported on
Redundant I/O networks. The intent of this service is threefold:

1) to provide simultaneous access to redundant devices on redundant networks
during no fault conditions

2) to increase the bandwidth of the physical I/O networks communicating with
redundant external devices.

3) to provide applications an uninterrupted flow of I/O data during periods of
network reconfiguration activity.

Network Protocols

HDLC Protocol: The bit oriented protocol conducted on the data link of the communication
hierarchy.

General I/O Protocol: The protocol followed between the IOS and nodes and DIUs for the
purpose of conducting I/O transactions. All transactions begin with a command frame sent

A-2

from the IOS to a node or DIU. A node always returns a response frame. A DIU is not
required to return a response frame.

Newwork Traffic

Frame: An HDLC frame. The smallest unit of communication between an IOS and an
external device (node or DIU) on an I/O network.

HDLC FRAME FORMAT

Flag Address | Control Dah&/ Re;l;!:la F’gg‘q"uec,',‘gﬁ" Flag

¢ Frame : >‘

Flag Fleld: 01111110 Control Fleld: 1byte RB 0-7bits
Address Flsid: 1byte DataFleld: 1-122bytes FCSField: 2bytes

Command Frame: A frame sent to a single node or DIU from an IOS using the HDLC
protocol. Sée Figure 77 A command frame to a node is distinguished from a command
frame to a DIU by the number of residual bits which are transmitted. A node command
frame has three residual bits while a DIU command frame has zero residual bits.

Response Frame: A frame sent to a GPC from a node or DIU using the HDLC protocol.
See Figure ?? A response frame from a node is distinguished from a response frame from a
DIU by the number of residual bits which are transmitted. A node response frame has three
residual bits while a DIU response frame has zero residual bits.

I/O Transaction: A command frame which may be followed by a response frame. A node
always returns a response frame. A DIU is not required to return a response frame.

I/O Chain: An ordered set of one or more transactions addressed to devices on one I/O
network. A chain consists exclusively of either node transactions or DIU transactions. A
chain is the smallest unit of I/O activity conducted by an IOS for a GPC.

Redundant Chains : A set of /O chains designed to execute in loose simultaneity on a set of
redundant I/O networks. The transactions within each chain are in a one to one
correspondence with the transactions in the other chains. This reflects the one to one
correspondence of redundant DIUs among the networks.

A-3

I/O Request: A set of one or more I/O chains each of which executes on a different I/O
network. An I/O request consists exclusively of one set of redundant chains or of one set
of non-redundant chains. An I/O request is the smallest unit of I/O activity conducted by
I/O System Services for a user.

Chain Execution: The activity carried out by an IOS which results in the transmission of
command frames and the reception of response frames on an I/O network. The program
which an IOS executes is under the direct control of I/O System Services and the indirect
control of the user specifying the chain. When a user creates a chain of transactions, certain
parameters must be specified which control the execution of the chain. I/O System Services
then translates these specifications into a program which is stored in DPM and which
executes when I/O System Services starts that chain. The activity is initiated by I/O System
Services but executes independently of the program running in the GPC.

A4

APPENDIX B: VO SERVICE OPERATING RULES: NETWORK TOPOLOGY, GPC
CONNECTIVITY AND VO REQUEST DEFINITION

1/0 Service: Definition and Operation

1.) An1/O Service provides access either to one regional network or to a _set of one or more local
networks.

2.) An I/O Service to a set of local networks operates those networks in parallel.

3.) /O Requests are specific to one I/O Service. It consists of a set of chains, at most one per
network within the service.

4.) All chains in an I/O Request are started at the same time. The /O Request is completed, and data
becomes available to a user, when all chains within the request are completed.

5.) Chains on parallel neworks can be used to allow corresponding devices on each network to be
accessed at approximately the same time. The degree of simultaneity which can be achieved is
determined by three factors: the rate at which the IOS samples its Interface Command Register, the
amount of time required to issue a Start Chain command, and the reprodu01b1hty of the response time
for corresponding external devices.

6.) A network is out of service from the time errors are detected on that network until a
reconfiguration has been effected. In this context , a reconfiguration consists of either a network
interface switch or a network reconfiguration. When a network is out of service, no user chains are
executed on that network, however, service to other networks in that I/O Service is not affected.

7.) Node status collection and spare link testing will be conducted 51multaneously on all
parallel networks within an I/O Service.

Network Topology Rules

1.) Nodes will be connected in a way which would require at least 3 port failures to isolate
any node or set of nodes from the rest of the network. This is the so called "minimum cut
set "

2.) At most one DIU will be connected to a node.

3.) At most one GPC will be connected to a node.

4.) A node may be connected to both a GPC and a DIU.

5.) Parallel networks need not be connected in identical ways nor do they need to contain
the same number of nodes or the same number of DIUs. In this way, user can trade
throughput for reliability. '

GPC Connectivity and Network Interfaces

1.) A network has at most one interface per GPC channel, i.e. redundant root links to a
network from a GPC come from distinct channels. Thus the maximum number of network
interfaces connecting a GPC to a network is equal to the number of channels in the GPC.

2.) Parallel networks are local networks in that they are used exclusively by one GPC for
normal operations for long periods of time. However, more than one GPC may be
physically connected to these networks and are therefore capable of taking over control and
use of these networks in repsonse to failure conditions. These spare connections are made
ready and initialized as if they were to be used but remain dormant until activated by some
higher controlling process such as the system manager.

3.) Redundant network interfaces (i.e. root links to the same network) must have their
I0Ss occupy corresponding address spaces within their respective channels. This facilitates
dual ported memory testing and allows modifications to chain programs and chain data to
be made simultaneously to all redundant interface to the network.

CORRECT redundant root link connection of a GPC to a network

B

A C
I0S IOSTIoS [0S [0S |1IoS | 105 I0S | 10S
213 1 2 2 3

NN N
()

B-2

!

INCORRECT redundant root link connection of a GPC to a network

>

B C
I0S [0S | 10S | 10S I0S
3 1 2 3 2

~8

oS
1
(Network 1

1/0 Request Definition

7
)

1.) I/O Request Definitions determine whether an I/O Service is being used for reliability
or throughput. They may access redundant devices simultaneously for greater reliability or
they may access non-redundant devices for greater throu ghput.

2.) An I/O Request may run chains on a subset of networks in an I/O Service, however ,

'unused networks in the service remain idle during the execution of the request.

B-3

APPENDIX C: INPUT OUTPUT SEQUENCER (I0S)

1.0 OVERVIEW

The Input Output Sequencer (IOS) is an autonomous asynchronous interface between an
AIPS General Purpose Computer (GPC) and an I/O network. It resides on the shared bus
of the GPC and can be accessed by either the Computational Processor (CP) or the I/O
Processor (IOP). A major function of the IOS is to carry out detailed communication with
1/O devices on the network as well as with the network nodes, off-loading the GPC from
lower level I/O functions. A simplified block diagram of the AIPS I/O organization is
shown in Figure 1.

The 10S is connected to a node of the I/O network via a bidirectional connection, which is
called a root link. When activated by the GPC, the IOS can transmit on the network via its
root link. The IOS is a memory mapped device that can be accessed and/or programmed by
the CP or the IOP to perform a sequence of instructions which is called a chain. The
memory locations within an IOS form a dual port memory that can be accessed by the
processors or the IOS. GPCs preload data into this memory for transmission to Device
Interface Units (DIUs) or nodes. The IOS interfaces with the DIUs and nodes in a
command response mode, which is referred to as a transaction. During a transaction the
IOS transmits a command to a DIU or node and then, if required, waits a predetermined
time for a response. The IOS writes response data into the locations of memory specified
by the GPC in the chain. An IOS executes a chain only when it is enabled by its GPC.

Each channel of a redundant GPC may contain an IOS. These IOSs, if connected to
separate independent networks, can all be active simultaneously. However, if all of the
IOSs are connected to the same I/O network, then only one should be enabled to transmit at
a time. A GPC channel may also contain more than one IOS for redundancy. When an
IOS is commanded to start, it first contends (polls) with all other active IOSs for the use of
the network if that network is shared among several GPCs. If it wins, it then has exclusive
use of the network and can send and receive messages to DIUs and nodes. If an 10S
loses, it waits for the network to be quiet (no data traffic) for a fixed amount of time or for
another poll to start before contending again. Provision is made within the IOS for starting
a poll without waiting if a failure is perceived on the network.

A detailed explanation of the components of the IOS follows. It includes a description of
the instruction format, memory assignments, register definition as well as chain examples
for the I0S. For the purpose of this document a chain is defined as the instructions that are
executed as a unit. All instructions within the IOS are 4 bytes long. All values are given in
hexadecimal unless otherwise specified.

memcembacaccacacasany

P R - e mwme e m .- .m---—--

Figure 1. AIPS I/O Organization

|

GPC

MD
PD
n A
¢ LATCH
“Tae| . MEMORY 4—MREQ T
CONTROLLER |¢—MCLR ; ROOT
—» > outpuT | —p TINK
LATCH
POLL
P LoGic l
| SOL PTR
———®" UNSOL PTR FLAG
. MA T MEMORY HDLC SHUTDOWN
8K X8
MUX DB ENGAGE
I0s
T e—| INPUT g | DATA
4F LATCH COUNTER
oS DATA
ADDRESS OUTPUT REGISTER
—P DECODER — LATCH »
| ADDRESS
REGISTER [—P
CHAIN
STATUS
REGISTER -| ADDREss
—» COUNTER |—P
INTERFACE
TIME - COMMAND > - e
—'I—b REGISTER M SEQUENCER | o
L]
>

Figure 2. IOS Block Diagram

2.0 I0S ORGANIZATION

A block diagram of the IOS is shown in Figure 2. The IOS is programmed from a GPC
which has access to the dual port memory and hardware registers. After loading the
memory with the required chains the GPC then starts the IOS. The IOS can then poll and
run the chains without GPC intervention. An overview of the major components of the
IOS is given below.

2.1 MEMORY CONTROLLER — The memory controller arbitrates memory accesses
from the GPC and the IOS. The memory is time shared between them by the use of
processor signal 4F. When 4F is high the processor can access the memory and when 4F
is low the IOS can have access. The memory controller generates chip select, read write
and output enable at the appropriate times.

2.2 ADDRESS MULTIPLEXER — The address multiplexer selects between the GPC and
IOS address buses. The output of the multiplexer is the memory address bus (MA). When
4F is high the processor address bus is connected to memory and when 4F is low the IOS
memory bus is connected to the memory.

2.3 MEMORY — The IOS memory is a byte addressed memory containing 8192 bytes. It
is used to store the chains, input packets and output packets. The first two bytes of
memory are used as the solicited chain pointer and the second two bytes are used as the
unsolicited chain pointer.

2.4 GPC INPUT LATCH — The GPC input latch is a buffer driver used to input byte
wide data from the GPC data bus (PD) to the memory data bus (MD).

2.5 GPC OUTPUT LATCH — The GPC output latch is a buffer driver used to output data
from the memory bus (MD) to the GPC data bus (PD).

2.6 10S INPUT LATCH — The IOS inpﬁt latch is a buffer driver used to input byte wide
data from the internal IOS data bus (DB) to the memory data bus (MD).

2.7 10S OUTPUT LATCH — The IOS output latch is a buffer driver used to output data
from the memory bus (MD) to the internal IOS data bus (DB).

2.8 ADDRESS DECODER — The address decoder decodes the individual hardware
registers which are located in the memory space between 10 and 1F. The addresses of the
hardware registers is given in section 4.

2.9 INTERFACE COMMAND REGISTER — The interface command register is a write

only register that contains the commanded mode. See section 5.3.1 for a detailed
description of the possible modes.

C-4

——— - —

2.10 SEQUENCER — The sequencer is the main control element of the I0S. When
started, the sequencer fetches the instructions from memory, stores them internally,
decodes and executes the microcycles by generating the appropriate control signals.

2.11 CHAIN STATUS REGISTER — The chain status register is a read only register that
contains the chain and contention logic status within the IOS. See section 5.2.1.2 for a
detailed description of the status reported.

2.12 ADDRESS COUNTER — The address counter stores the current memory address
that the IOS is using. This address points to where the chain instructions are located in
memory. During an input instruction it points to the location where the incoming data byte
is to be stored. In an output instruction it points to the byte to be output when the HDLC
chip requests a byte. It is loaded during instruction fetches and incremented during the
instruction microcycles.

2.13 ADDRESS REGISTER — The address register contains the fixed addresses used in
the instructions. During an input instruction it contains the address of the HDLC input

register. During an output instruction it contains the address of the HDLC transmitter
holding register.

2.14 DATA COUNTER — The data counter contains data that is incremented during an
instruction. During an input instruction it accumulates the byte count of the incoming data.
During an output instruction it counts the number of bytes outputted until the message is
completc at which time it signals the sequencer to terminate the instruction.

2.15 DATA REGISTER — The data register is used to temporarily store data within an

instruction. During an input instruction it holds the incoming byte from the HDLC receiver
register until a memory cycle can be performed to store it. During an output instruction it
holds the next byte to be outputted until the HDLC transmit holding register requests it.

2.16 HDLC — The HDLC device contains independent transmitter and receiver sections.
The HDLC transmitter section receives the data bytes, appends opening and closin g flags,
encodes, and transmits the data. The receiver section searches the data stream for an
opening flag. When it detects one, it synchronizes with the data fields and decodes the data
stream into bytes for storage. In both modes the device generates the handshaking signals
necessary to run the interface. See Sections 5 for details on the operation and control of the
HDLC registers.

2.17 FLAG SHUTDOWN — The flag shutdown logic guarantees that the external IO
network transmissions lines are always left in the same state after use. This allows the data
and poll logic to utilize the same transmission lines. See section 6 for details.

2.18 DRIVERS and RECEIVERS — These drivers and receivers allow the IOS to interface
to the IO network. The drivers are enabled by an engage line from the GPC. The receivers
are always enabled but the input is controlled by the HDLC device.

2.19 POLL LOGIC — The poll logic allows the IOS to contend with other IOSs to gain
control of the IO network. When enabled, the poll logic monitors the IO network waiting
for a quiet time and then starts a poll. When it wins it starts a solicited chain, but if it loses
it waits for the next poll or quiet time and tries again. See section 7 for additional details.

2.20 TIME DRIVER — The time driver allows the chain to read the time byte that appears
on the shared bus. ‘

3.0 INSTRUCTION FORMATS

The IOS can execute a limited number of instructions to perform its functions. The
following paragraphs detail the form and function of the IOS instructions.

3.1 NOP (0000 0000) — This instruction updates the chain pointer to the address of the
next sequential instruction. At the end of the NOP it will fetch that instruction.

3.2 BRANCH (2000 dddd) — This instruction will fetch the instruction contained at
location 'dddd’ and begin its execution. The Chain Pointer will be updated to point to the
next instruction (dddd+4).

3.3 MOVE (40ss dddd) — This instruction will move a byte, located at any address 'ss’
within the first 25610 bytes of IOS memory, to the byte address specified by 'dddd'.
MOVE can be used to store the current value of a hardware register or store a preset value
into a register.

3.4 MOVE IMMEDIATE (60xx dddd) — This instruction allows a constant, xx, to be
stored into the destination address dddd.

3.5 INPUT (801B dddd) — This instruction will store incoming HDLC bytes in the
buffer area starting at address ‘dddd'. At the start of execution of this instruction the byte
reserved for the input byte count is set to zero and the current value of the contention status
is also stored within the buffer. As bytes are received they are stored at sequential
addresses within the specified buffer locations and an internal byte count is incremented. A
valid message always ends with a closing flag, which causes the IOS to then store the byte
count, HDLC status registers and the TIME byte within the incoming packet buffer area.
The INPUT instruction has now completed and the next sequential instruction is fetched
and executed. The maximum number of data bytes that a single instruction can store is
12210. If the INPUT contains more than 12210 data bytes, data will be lost. However, the
buffer will never exceed the 12810 bytes allotted to it. The byte count which includes the

C-6

status bytes, will also never exceed 80 (12810). This instruction can be terminated if the
time allotted for response is exceeded (the value programmed into the timer is reached
without a data byte being received). However, in this situation none of the status
information (HDLC IR & SR registers, time and byte count) is saved. An incoming data
packet will always have the following format.

Byte count

HDLC IR register

HDLC SR register

TIME byte

contents of Chain Status Register

data (first byte)

data (last byte received)

3.6 OUTPUT (EO1C ssss) — This instruction will transmit the bytes specified in the
buffer starting at location 'ssss + 1'. The first byte at location 'ssss' contains the value of
the expression, 80 - NB, where NB is the number of bytes to be transmitted. This
instruction terminates when all the bytes have been transmitted.

40 MEMORY MAP

The following is the assigned memory locations in the dual port memory space of the IOS.
Addresses 10 - 1F are hardware registers, however they are addressed the same as the

RAM locations. All memory addresses, including the hardware registers are accessible
from the CPU. ‘

ADDRESS FUNCTION

0 R/W Solicited Chain Pointer - High Byte (RAM)

1 R/W Solicited Chain Pointer - Low Byte (RAM)

2 R/W Unsolicited Chain Pointer - High Byte (RAM)
3 R/W Unsolicited Chain Pointer - Low Byte (RAM)
10 R Chain Status Register

11 w Interface Command Register

12 w Timer Limit Register

13 w Poll ID Register - 6 bit polling address

C-7

14 w Poll Prio Register-3 bit prio & polling level
15 R Time Byte

16 Reserved

17 Reserved

18 R/W HDLC Control Register 1 (CR1)

19 R/W HDLC Control Register 2 (CR2)

1A R/W. HDLC Control Register 3 (CR3)

1B R HDLC Receiver Holding Register (RHR)
1B w Address Register (AR)

1C R HDLC Interrupt Register (IR)

1C W Transmit Holding Register(THR)

1D R HDLC Status Register (SR)

1E Reserved

1F Reserved

With the exception of the addresses specified above, the rest of the dual port memory space
can be used for any desired function. However, it should be noted that the MOVE
instruction can only use the first 25610 addresses for the source byte.

5.0 REGISTERS

A description of the hardware registers and their use is contained in the following
paragraphs. The hardware can execute two types of chains, solicited and unsolicited.
Solicited chains are defined as command response chains and are meant to be executed
when the GPC has control of the network. Unsolicited chains are defined as those that are
performed when the GPC does not have control of the network but must accept all frames
addressed to it. Unsolicited chains are not defined on the IO network, however, they are
used as a vehicle while waiting for a poll to be won. On the IC network using the ICIS,
unsolicited chains are executed whenever the GPC does not have the network, including
while waiting for a poll to be won. '

5.1 READ/WRITE REGISTERS
5.1.1 CHAIN POINTER REGISTERS

3.1.1.1 SOLICITED CHAIN POINTER (ADDR = 00 & 01) — The solicited chain
pointer is used by the IOS to indicate where the next instruction of a solicited chain is
located. When a new chain is to be started, this location is loaded with the address of the
first instruction to be executed. It must be loaded before an execute chain commiand is
issued. As each chain instruction is fetched, this location is updated to point to the next
sequential instruction. The GPC can read this location at any time. However, since the
IOS writes the locations a byte at a time and the GPC can read them as a word, the value
read by the GPC may be incorrect if a chain is executing. The GPC should not attempt to

C-8

write these bytes while a chain is executing, since it cannot be guaranteed that the IOS is
not presently also modifying them.

5.1.1.2 UNSOLICITED CHAIN POINTER (ADDR = 02 & 03) — The unsolicited
chain pointer is used by the IOS to indicate where the next instruction of an unsolicited
chain is located. When a new chain is to be started, this location is loaded with the address
of the first instruction of the unsolicited chain to be executed. It must be loaded before an
execute chain command is issued. As each chain instruction is fetched, this location is
updated to point to the next sequential instruction. The GPC can read this location at any
time. However, since the IOS writes the locations a byte at a time and the GPC can read
them as a word, the value read by the GPC may be incorrect if a chain is executing. The
GPC should not attempt to write these bytes while a chain is executing, since it cannot be
guaranteed that the IOS is not presently also modifying them. Unsolicited chains are
identical to solicited chains and can execute any mix of instructions.

5.1.2 HDLC READ/WRITE REGISTERS

The following is extracted from the Western Digital data sheets on the HDLC chip (WD
1935). Definitions of bit polarity and sense have been modified to reflect what is seen by
the AIPS system.

5.1.2.1 CONTROL REGISTER #1 (CR1) (ADDR = 18) — Control register 1 is used to
specify the transmitter parameters and the transmitter and receiver enables. It can be loaded
by a GPC or by a MOVE instruction in the chain.

NOTE: This register must always be loaded after CR2 and/or CR3. If CR2 and/or CR3
are ever changed, CR1 must again be reloaded after the change even if there are no changes
being made to CR1.

7 6 : 5 4 3 -2 1 0
ACT ACT TC TC TCL TCL DTR MISC
REC TRAN 1 0 1 0 ' ouT

5.1.2.1.1 ACT REC (bit 7) — Activate receiver bit when set to a ZERO (0), the receiver
is enabled to accept a data stream. When set to a ONE (1), the receiver will ignore any
frames on the network.

3.1.2.1.2 ACT TRAN (bit 6) — Activate transmitter bit. When set to a ZERO (0), the
encoder and transmitter are enabled to output data onto the nciwork. When set to a ONE
(1) the HDLC device will not transmit data.

5.1.2.1.3 TC1 and TCO (bits 5 and 4) — The transmit command bits program the device
into the requested mode. In AIPS, the OUTPUT instruction will function properly only in
the data mode. These bits and the modes that they generate are as follows:

bit bit MODE FUNCTION

5 4

1 1 data Outputs the contents of the transmitter

» holding register

1 0 abort Generates an abort message (not used
on AIPS)

0 1 flag Transmits one flag character (not used
on AIPS)

0 0 FCS Generates the two CRC bytes and a

closing flag (not used on AIPS)

5.1.2.1.4 TCL1 and TCLO (bits 3 and 2) — These bits control the number of bits per

character from the transmitter. In AIPS this has been defined as 8 bit bytes. The definition
of these bits follows:

bit bit BITS PER

3 2 CHARACTER
1 1 8

1 0 7

0 1 6

0 0 5

5.1.2.1.5 DTR (bit 1) — Data Terminal Ready, a modem signal that is not used in this -
design and should be programmed to a ONE (1).

3.1.2.1.6 MISC OUT (bit 0) — Miscellaneous Output, a control signal not implemented in
this design and should be programmed to a ONE (1).

5.1.2.2 CONTROL REGISTER #2 (CR2) (ADDR = 19) — Control register #2 specifies
the receiver parameters and other control functions as defined below. It can be loaded by a
GPC or by a MOVE instruction in the chain.

7 6 5 4 3 2 1 0

EXT ADDR EXT RCL RCL LOOP SELF AUTO
CONT COMP ADDR 1 0 TEST FLAG

C-10

5.1.2.2.1 EXT CONT (bit 7) — This bit extends the HDLC control field. It is not used
on AIPS and must be programmed to a ONE (1).

5.1.2.2.2 ADDR COMP (bit 6) — This bit enables the on-chip address comparator. If set
to a ZERO (0), the first byte after the opening flag will be compared to the byte stored in
the AR register. If equal, the data bytes that follow will be output. If address compare is
enabled, and the address does not compare, all data bytes following will be ignored. If bit
six is set to a ONE (1) then address comparison is not performed in the chip and all bytes
between the opening and closing flag are presented to the interface. In AIPS, the IOS and
the NODES do not use the address compare function but the ICIS does.

5.1.2.2.3 EXT ADDR (bit 5) — This bit extends the HDLC address field. It is not used
on AIPS and must be programmed to a ONE (1).

5.12.2.4 RCLI1 and RCLO (bits 4 and 3) — These bits specify the receiver character
length. In AIPS this has been defined as 8 bit characters. The definition of these bits is as
follows:

bit bit BITS PER
4 3 - CHARACTER

OO et
O = O
Wb O\ N 00

5.1.2.2.5 LOOP (bit 2) — Specifies HDLC loop mode, a test function, not implemented
in the IOS. This bit should always be programmed to a ONE (1).

5.1.2.2.6 SELF TEST (bit 1) — Chip diagnostic mode, not 1mplemented through the
IOS. This bit should always be programmed to a ONE (1).

5.1.2.2.7 AUTO FLAG (bit 0) — When this bit is set to a ZERO (0) and the transmitter is
enabled, the chip will issue constant flag characters between frames. The IOS design
utilizes this function and therefore must be set to a zero during an output instruction.

5.1.23 CONTROL REGISTER #3 (CR3) (ADDR = 1A) — This register is used to

control the number of residual bits in a transmission. It can be loaded by a GPC or by a
MOVE instruction in the chain. The definiticns of these bits are as follows:

C-11

X X X X X TRES TRES TRES
2 1 0

5.1.2.3.1 BITS 7 through 3 — Unused

5.1.2.3.2 TRES 2 - 0 (bits 2, 1 and 0) — These bits define the number of residual bits to
be sent as the last character in a transmission. Messages sent to and from a NODE contain
three (3) residual bits. Messages to and from DIUs contain no residual bits. The definition
of these bits are as follows:

bit bit bit RESIDUAL BITS/FRAME
2 1 0

No residual bits sent

C O OO - rm =
OO i OO
O O = O = O =
NON G R W

5.2 READ ONLY REGISTERS

5.2.1.1 CHAIN STATUS REGISTER (ADDR = 10) — This register contains siatus of
both the chain and the contention logic.

CHAIN STATUS REGISTER (Read Only)

7 6 5 4 3 2 1 0

Chain Contention Possession Data Poll Any Any

Comp State Default Tx Tx Rev Rev
Fail Fail Fail Good

5.2.1.1.1 CHAIN COMPLETE (bit 7) — This bit is set whenever the current chain has
completed. Chain complete is defined as an IOS transition from solicited mode to
unsolicited mode without the £ _L bit in the command register set. It is reset whenever
the poll bit is changed to a one in the interface command register or the IOS transitions from
the unsolicited mode to the solicited mode.

C-12

5.2.1.1.2 CONTENTION STATE (bits 6 and 5) — This is the present state of the poll
logic only. The following are the possible states that can be indicated.

5.2.1.1.2.1 INACTIVE, BUS RELEASED (00) — Both bits are zero whenever the I0S
is not attempting to gain control of the network.

5.2.1.1.2.2 WAIT (01) — This IOS has been instructed to acquire the network, however
no POLL has started since the request occurred.

5.2.1.1.2.3 ATTEMPTED (10) — This IOS has entered and lost at least one POLL
sequence since being commanded to acquire the network.

5.2.1.1.2.4 POSSESSES (11) — This IOS presently has possession of the network.

5.2.1.1.3 POSSESSION DEFAULT (bit 4) — Indicates that the IOS possesses the
network and detected an incoming POLL length bit on the network. If a chain is in
progress when this happens, it will continue to completion. This bit is reset whenever the
POLL bit in the Command Register is set to zero.

5.2.1.1.4 DATA TX FAIL (bit 3) — Indicates that a data bit was detected at the receiver
during a command frame transmission. The chain will continue to completion. This bit is
. reset whenever the POLL bit in the Command Register is set to zero. This bit can only be
set during a network possession. :

5.2.1.1.5 POLL TX FAIL (bit 2) — Indicates that a data length bit was detected during a
Poll Sequence. This bit is reset whenever the POLL bit in the Command Register is set to
zero.

5.2.1.1.6 ANY RCYV FAIL (bit 1) — Indicates that at least one response frame has been
received with a protocol error in it. It is reset whenever a new poll begms or the I0S
transitions from the unsolicited mode to the solicited mode.

5.2.1.1.7 ANY RCV GOOD (bit 0) — Indicates that at least one response frame has been
received without a protocol error. It is reset whenever a new poll begins or the 10S
transitions from the unsohcxted mode to the solicited mode.

5.2.2 HDLC READ ONLY REGISTERS
5.2.2.1 RECEIVER HOLDING REGISTER (RHR) (ADDR = 1B) — This read-only
register contains the received bytes as they are decoded from the frame. When executing an

input instruction the IOS automatically reads this location and stores the received bytes into
the specified location in the dual port memory.

C-13

5.2.2.2 INTERRUPT REGISTER (IR) (ADDR = 1C) — This read-only register
contains status information on the state of the HDLC operation. It can be read by the GPC
or with a MOVE instruction within a chain. Bits 7 through 3 will accumulate information
such that if the IR is read after several operations, it will have the "OR" of all those frames.
The definition of the bits within this register is as follows:

7 6 5 4 3 2 1 0
REOM REOM XMIT XMIT DISC DRQI DRQO INTRQ
NO WITH NO WITH

ERR ERR ERR URUN

5.2.2.2.1 REOM NO ERR (bit 7) — When equal to a ZERO, this bit indicates that the

frame was received without errors. If this bit is read before the closing flag is detected, it

will not have been updated from the last frame.

5.2.2.2.2 REOM WITH ERR (bit 6) — When equal to a ZERO, this bit indicates that the
frame was received with errors. If this bit is read before the closing flag is detected, it will
not have been updated from the last frame. The errors that are reported here are: CRC,
overrun, invalid frame and aborted frame.

5.2.2.2.3 XMIT NO ERR (bit 5) — When equal to ZERO, this bit indicates that the
transmitted frame had completed without underrun errors.

5.2.2.2.4 XMIT WITH URUN (bit 4) — When equal to ZERO, this bit indicates that the
transmitted frame had extra bytes inserted by the chip because the data was not available to
the transmitter in the allotted time.

5.2.2.2.5 DISC (bit 3) — This b1t is used with modems and in this system has no
meaning. , .

5.2.2.2.6 DRQI (bit 2) — When set to a ZERO, this bit indicates that there is a byte
available in the Receiver Holding Register (RHR). Reading the RHR sets this bit to a
ONE. The hardware uses a buffered copy of this bit when storing bytes into dual port
' memory during an input instruction.

5.2.2.2.7 DRQO (bit 1) — When set to a ZERO, this bit indicates that the Transmit
Holding Register (THR) is empty and requires another character to prevent an underrun
error. Storing a byte into the THR sets this bit to a ONE. The hardware uses a buffered
copy of this bit during an output instruction to read a byte from the dual port memory and
store it into the THR.

C-14

5.2.2.2.8 INTRAQ (bit 0) — This bit is set to a ZERO whenever at least one of bits 3-7 in
the IR register is set to a ZERO. This bit is set to a ONE whenever the IR is read. A
buffered copy of this bit is used to terminate a normally completing input or output
instruction.

5.2.2.3 STATUS REGISTER (SR) (ADDR = 1D) — This read-only register contains
status information that, when used in conjunction with the contents of the Interrupt
Register, define the cause of the error.

7 6 5 4 3 2 1 0
RI D DSR MISC RCVR RRES RRES RRES
IN IDLE 2 1 0

/ERR /ERR [ERR
5.2.2.3.1 RI (bit 7) — A modem signal not implemented in this interface.
5.2.2.3.2 CD (bit 6) — A modem signal not implemented in this interface.
5.2.2.3.3 DSR (bit 5) — A modem signal not implemented in this interface.
52.23.4 MISCIN (bit 4) — An input discrete not used in this interface.

5.2.2.3.5 RCVRIDLE (bit 3) — When set to a ZERO, the receiver is idle, i.e. a frame is
not in process.

5.2.2.3.6 RRES2 /ERR (bit 2) — This bit has a dual role. If bit 7 in the Interrupt
Register is a ZERO, then this bit is part of a binary number (see section 5.2.2.3.8)
representing the number of residual bits received. If bit 6 in the Interrupt register is set to a
ZERQ, and this bit is set to ZERO then an aborted or invalid frame was detected.

5.2.2.3.7 RRESI1 /ERR (bit 1) — This bit has a dual role. If bit 7 in the Interrupt
Register is a ZERO, then this bit is part of a binary number (see section 5.2.2.3.8)
representing the number of residual bits received. If bit 6 in the Interrupt register is set to a
ZERO, and this bit is set to ZERO then an overrun error was detected. An-overrun error
indicates that a received byte was not removed from the Receiver Holdin g Register before
the next byte was received. That first byte will be lost.

5.2.2.3.8 RRESO /ERR (bit 0) — This bit has a dual role. If bit 7 in the Interrupt
Register is a ZERO, then this bit is part of a binary number (see below) representing the
number of residual bits received. If bit 6 in the Interrupt register is set to a ZERO and this
bit is set to ZERO, then a CRC error was detected.

C-15

bit bit bit RESIDUAL BITS/FRAME

No residual bits sent

cooo;—nr—t‘r—tr—tl\)
OO = OO =
C—L OO = O~=O
N OANWnM AW =

5.2.3 TIME (read only) (ADDR = 15) — This byte contains a value that is slaved to the
system timer, incremented by a 6610 microsecond clock and capable of measuring
16.83010 milliseconds. It can be read by the GPC or by a move instruction in the chain. It
is automatically appended to all incoming frames that complete in a valid manner.

5.3 WRITE ONLY REGISTERS

5.3.1 INTERFACE COMMAND REGISTER (Write Only) (ADDR = 11) — This
register contains the necessary control bits to operate the IOS. The following are valid
commands used to control the IOS. The END CHAIN command transitions the I0OS from
solicited to unsolicited mode. The STOP CHAIN command turns the IOS off.
START CHAIN WITH POLL =94
- START CHAIN WITHOUT POLL = 80

END CHAIN = 84

STOP CHAIN = 20 (followed by a 00 command to prime the interface for
the next command)

INTERFACE COMMAND REGISTER (Write Only) -

7 6 5 4 3 2 1 0
EXECUTE X STOP POLL SPOLL EXECUTE X X
CHAIN MM ‘ UNSOL

CHAIN

5.3.1.1 EXECUTE CHAIN (bit 7) — When only the execute chain bit is set to a one (1),
this commands the hardware to fetch and start executing instructions starting at the address
stored in the Solicited Chain Pointer. The chain will start even if a Poll was neither started
nor won. If however, a poll is to be won first before starting the chain, then bits 7, 4 and 2

C-16 -

must be set to a one. The hardware will then start the polling logic, start an unsolicited _
chain pointed to by the unsolicited chain pointer (usually an input instruction) and when a
poll is won, automatically start the chain at the location pointed to by the solicited chain
pointer.

5.3.1.2 Bit 6 - Not used by the IOS.

5.3.1.3 STOP IMM (bit 5) — When the stop immediately bit is set to a one (1) the
hardware will turn off the IOS. Whatever function the I0S is now performing will be
terminated. This allows the GPC to stop the hardware if it is caught in a loop or otherwise
~malfunctioning.

5.3.1.4 POLL (bit 4) — Whenever the poll bit is set to a one (1) the logic will attempt to
gain control of the network by joining the next possible poll sequence. At the end of a
chain this bit must be reset.

5.3.1.5 SPOLL (bit 3) — Whenever the spoll bit is set to a one (1), the hardware will
immediately start to poll. The hardware will not wait for the start of a new poll from
another site or an idle condition on the network. At the end of a chain this bit must be
reset. -

5.3.1.6 EXECUTE UNSOL CHAIN (bit 2) — This bit is only recognized by the
hardware when set in conjunction with the execute chain bit, bit 7. If bits 7 and 2 are both
set to a one (1), the hardware will execute the chain starting at the location pointed to by the
unsolicited chain pointer. If a GPC desires to first gain control of a network, it sets bits 7,
4 and 2 to a one and all others to a zero (0). The hardware will enable the polling logic,
start the unsolicited chain at the location pointed to by the unsolicited chain pointer (usually
an input instruction) and when a poll is won, automaucally start the chain at the location
pomted to by the sohcued chain pointer.

5.3.1.7 Bits 1 and 0 are not used.
5.3.2 HDLC WRITE ONLY REGISTERS

5.3.2.1 ADDRESS REGISTER (AR) (ADDR =1B) — This write-only register contains
the address that the chip is to use for comparison if on-chip address recognition is being
used. If on-chip address detection is not used, the contents of this register will be ignored.
This register is not used by the IOS.

5.3.2.2 TRANSMIT HOLDING REGISTER (THR) (ADDR = 1C) — This write-only
register holds the next data byte to be transmitted. The hardware loads a byte into this
register during an Output instruction whenever DRQO is set.

C-17

5.3.3 TIMER LIMIT REGISTER (Write only) (ADDR = 12) — The timer limit register
contains the current value to be used to time out an instruction. A non-zero value written to
the timer limit register allows the timer to function. The timer is initialized at the beginning
of each instruction and as each incoming data byte is detected. If an instruction does not
complete or an incoming data byte is not detected in the programmed number of
microseconds, the current instruction is terminated and the next sequential instruction
started. A new value stored in the timer limit register will be utilized when the next
instruction is started or the next incoming byte is detected during an input instruction.

5.3.3.1 TIMER LIMIT VALUE — The timer limit is the number of periods of the clock
2F. 2F has a period of approximately 2 microseconds. The timer, therefore, has an
approximate range of 2 to 512 microseconds.

5.3.4 POLL REGISTERS

5.3.4.1 POLL PRIORITY REGISTER (Write only) (ADDR = 14) — The Poll Priority
Register contains the six high order polling bits. The three bits labeled PRIO, are used for
the initial priority of this IOS. They will automatically increment after each poll sequence
loss until they contain all ones, at which time incrementing is inhibited and the maximum
priority held. Since the initial state of the PRIO bits are not saved, this register must be
reloaded whenever the initial polling state is required. The three bits labeled LEVEL, are
the high order bits of the poll sequence. For the IO network LEVEL 2 is set to a one,
LEVEL 1 and LEVEL O are set to a zero. It can be loaded by a GPC or by a MOVE
instruction in the chain. ’

7 6 5 4 3 2 1 0

X LEVEL LEVEL LEVEL X PRIO PRIO PRIO
2 1 0o 2 1 0

5.3.4.2 POLL ID REGISTER (Write only) (ADDR = 13) — The Poll ID register
contains the six (6) low order bits used in the polling procedure. These bits normally
contain the address that this IOS uses for polling. It can be written into by the GPC or by a
MOVE instruction within the chain.

7 6 S5 4 3 2 1 0
X X BITS BIT4 BIT3 BIT2 BIT1 BITO
(MSB) (LSB)

C-18

6.0 FLAG SHUTOFF SYNC

The IOS uses the same IO network lines to communicate and to poll. In order to be able to
perform both functions on the same lines all operations must leave the lines in a known
state. The HDLC protocol allows the signalling lines to be left in either state, and in fact
the device used to generate the HDLC protocol does leave the line in either state depending
upon the data content of the message. The IOS contains logic, which upon sensing the end
of a message, utilizes the closing flags to turn off with the line in a low state without
generating any extraneous edges. When the next output message is started, the first flags
are used to turn the logic back on to the state that the HDLC device attempted to leave the
line. Again this is done without generating any extraneous bits. The polling loglc is
fabricated so as to always end with the line low.

70 POLLING

The IOS contains logic which allows it to contend with the other IOSs for use of the IO
network. If the IOS is to contend for the network, the bits in the interface command
register must be set to execute, poll and execute unsolicited mode. The logic will start the
chain pointed to by the unsolicited pointer and simultaneously prime the polling logic. The
reason for having a unsolicited chain is to give the IOS a place to wait for the poll to
complete. Therefore, there must be an input instruction without the timer running where
the IOS will "hang" waiting for the poll to be won.

The polling logic waits for either a poll to begin or the bus going quiet for 512
microseconds. When either occurs, the logic will assert a start bit for 24 microseconds.
This gives all other IOSs time to recognize the start of a poll and join if required. At the
end of the poll bit the logic compares the state of its input line with the state of its output
line. If another IOS is joining the poll, the input line will also be high and the I0S must
continue to poll to determine who will win. It next asserts the fixed priority bits, one at a
time for 24 microseconds, followed by the variable priority bits and its address bits. At the
end of each 24 microsecond period it compares its output to what it perceives on the bus.
If what it hears is the same as what it is transmitting it must continue to the next bit as no
decision can be made. If it hears a zeéro while it is transmitting a one, then it knows it has
won because it has a higher value than all others that are contending. If it hears a one while
it is transmitting a zero, then it knows it has lost because it has a lower value than at least
one other contender, and it will stop transmitting and wait for another poll to begin. When
the IOS decides that it has won it will abort the unsolicited chain and perform a context
switch to tl"lC solicited chain and start to execute it.

. The variable priority bits are incremented after each poll sequence loss until they reach the

maximum value of 7. They will remain at this value until written into by the program or the
chain. If an IOS detects a data bit during its polling it will terminate the poll and set an
error bit.

C-19

8.0 DUAL-PORT OPERATION

The IOS utilizes a time shared 8k x 8 memory for program and input output buffer storage.
This memory can be alternately accessed by the GPC and the IO0S. Each site has
independent access to the memory for four CPU clock periods.

8.1 TIMING The dual-port memory utilizes the CPU clock signal 4F, which has a period
of eight CPU clocks. When 4F is high the GPC has access to the memory and when 4F is
low the IOS has access to the memory. In the following discussion the IOS timing is
discussed. The GPC timing is identical, happening on the opposite phase of 4F.

If the 10S requires the use of the memory it assert the signal MREQ. MREQ is recognized
on the first rising edge of CPU clock after 4F falls, which causes a chip select to the
memory to be asserted. (4F changes state on a falling edge of CPU clock.) Chip select is
three clock periods wide. The memory cycle is terminated by MCLR being asserted for
one CPU clock period and chip select being deasserted. MCLR causes MREQ to be
deasserted.

When a write is specified, the read/write line will be low. One clock period after chip select
is asserted, a write enable signal to the memory is asserted. If a read is specified, the
read/write line will be high and on the next rising edge of CPU clock after chip select is
asserted, an output enable will be asserted. By delaying output enable, none of the
memory switching transients are seen.

The operation of the dual-port memory from the GPC side is identical except the memory
request is initiated with the falling edge of PSEL and terminated with the assertion of
CLRP. The GPC can only make memory requests during the time that 4F is high. The
address multiplexers are also driven by 4F. .

9.0 HDLC PROTOCOLS

The HDLC bit orientated protocol was chosen for use on AIPS. HDLC allows automatic
address detection, contiol information and a cyclic redundancy error word to detect
transmission errors. In the IOS automatic address detection and the control byte are not
used. The IOS operates in a command response mode at all times. It sends a message to a
site and then waits for a response only when it has control of the IO network.

An HDLC frame contains an opening flag, address byte, control byte, data bytes (in AIPS
up to 11910), FCS byte, FCS byte and a closing flag. The openuig and closing flag are
identical and consist of a zero, followed by six ones and a zero. It is not possible for a flag
to look like data since the HDLC protocol specifies that within the data field after five
continuous ones a zero is added.

C-20

10.0 ENGAGE

The AIPS GPCs generate a voted engage signal which is used to enable external functions. .
In a faulty GPC this signal will not be asserted. The IOS uses this signal to enable its bus
driver that connects it to the IO network. Therefore, a faulty GPC and/or faulty IOS can be
disconnected and prevented from bring down the IO network.

11.0 BUFFER FORMATS

A typical chain will contain both input and output instructions. Each of these instructions’
must have buffer areas within the IOS's memory. The input buffers contain the messages
that the IOS receives from Nodes and DIUs. The output buffer areas contain the messages

“ that the IOS sends to Nodes and DIUs. There are no restrictions on where in memory
~ inputs or output are stored. The following is the format of the input and output messages.

11.1 INPUT BUFFER FORMAT: The third and fourth byte of the input instruction point
to a location in memory where the IOS will store an incoming message. Each incoming
message contains a five byte preamble before the data part of the message. The first byte
contains the byte count, which is the number bytes received plus the four additional bytes
of the preamble. This can be used as an offset to point to the last byte of the buffer. If the
input instruction is terminated by the timer expiring, then this byte will contain zero even if
a partial message had been received before the message stopped. The second and third
bytes contains the HDLC IR and SR registers respectively. These bytes are used to check
for HDLC protocol errors. The fourth byte contains a time tag as recorded at the end of the
input instruction. The fifth byte contains the contents of the Chain Status Register. From
the sixth byte on is the data content of the message. To recap, input buffers within the
memory all have the following format:

Byte Count
HDLC IR Register
. HDLC SR Registcr
Time
Content of Chain Status Register

data (first byte)

C-21

data (last byte)
In the case of aresponse from a Node the input format will be as follows:

Byte Count

HDLC IR Register

HDLC SR Register

Time

Content of Chain Status Register

Node Address

Port Activity Seen

Transmission Errors Seen

Valid Frame Seen

Error in Node Messages Seen

Node Port Configuration

Sum Check

Residue Bits (3 bits residue + 5 bits FCS)

FCS (next 8 bits of FCS)

FCS (last 5 bits of FCS + 3 bits of pad)
11.2 OUTPUT BUFFER FORMAT: The third and fourth bytes of the output instruction
contain the address within the IOS memory of the output buffer for this instruction. The
first byte located at this address is 80 - NB, where NB is the number of bytes in this
output message. Following the byte count is the rest of the message. Since the longest
message that can be received L been defined as 12810 bytes, and each input message
contains a 5 byte preamble and 2 FCS bytes, the maximum data part of an output message

can only contain 12110 bytes. If more than 12110 bytes are specified, the receiving location
will truncate the message. The format of the output buffer is as follows:

C-22

b

Byte Count (80 - NB)

data

last data byte
12.0 EXAMPLE CHAINS
The following are intended to show how a Chain is programmed in the IOS.

12.1 EXAMPLE #1 — This example shows a chain which programs the HDLC chip and
then does an Output frame followed by an input frame. The GPC stores the following
values into the IOSs memory. (The IOS is a byte oriented device. For simplicity, the
columns value or contents are two bytes and the columns labled I0S location or address
show the address of the high order byte. i.e. 0100 @ 8CX000 means that a 01 is stored at
location 8CX000 and a 00 is stored at location 8CX001. The value of X indicates in which
channel of a GPC the IOS is located. i.e. X = 1 for channel A, X = 2 for channel B,X=4
for channel C. The high order bit of X is the high order bit of the address of the dual-port
memaory.) '

The GPC writes the following locations:

XX 8CX013 Value of low order polling bits
4y 8CX014 Value of high order polling bits
94 8CX011 - Commands IOS to execute chain, execute unsolicited and

poll

The last store writes into the interface command register which instructs the IOS to enter a
POLL as soon as it detects one starting, or to start a POLL if it sees the bus goidle. The
IOS meanwhile starts to execute the unsolicited instructions starting at location 200. As
soon as this IOS thinks it won a POLL, it terminates the unsolicited chain and starts the
solicited chain at location 100. (All values below are given in HEX.)

INST# ADDRESS CONTENTS DESCRIPTION

- 8CX000 - . 0100 Solicited Chain Pointer

- 8CX002 ’ 0200 Unsolicited Chain Pointer
0005 8CX100 4015 MOVE the current value of

C-23

0006

0007

0008

0009

0010

0011

0012

0013

8CX102

8CX104
8CX106

8CX108
8CX10A

8CX10C
8CX10E

8CX110
8CX112

8CX114
8CX116

8CX11C
8CX11E

8CX120
8CX122

8CX124
8CX126

01F1

401C
01F2

60FC

001A

60FE
0019

60BF
0018

EO1C
1000

607F

0018

401C
01F3

401D
01F4

C-24

time to location 01F1 (This could
be done to find out when the
solicited part of the chain started)

Read the IR register to clear
any prior status

Store an FC in CR3. Sets the
chip to send 3 residual bits.

Store an FE in CR2. Puts the
chip in the auto flag mode. This is
mandatory to guarantee that all
receivers will see the flag
character and no extraneous data.

Store a BF in CR1. This ‘
enables the chip in the data mode
and turns on the transmitter. (CR1
must be loaded after CR2 and
CR3) Flags will now be sent until
data is loaded into the THR.

Enter the OUTPUT mode.

The byte count is read from
location 1000 and the data bytes
starting at location 1001 are
transmitted. When the byte count
reaches 80 the output instruction

‘ends.

Store a 7F in CR1. This
instruction turns off the
transmitter and turns on the
receiver.

Read the IR register and

store it in location 01F3. This will
clear the status before the next use
of the HDLC chip.

Read the SR register and
store it in location 01F4.

0014

0015

0016

0017

0001

0002

0003

8CX128
8CX12A

8CX12C
8CX12E

8CX130
8CX132

8CX134
8CX136

8CX200
8CX202

8CX204
8CX206

8CX208
8CX20A

60FF
0012

801B
4000

0012

2000
0348

4015
01F0

6000

on1

30iB

1F0Q

C-25

Store a FF in the timer
limit register and enable it to run
(Timer = 512 micro).

Enter the INPUT mode.

Location 4000 will be cleared to
accept the incoming byte count.
If no data is received the IOS will
wait here for 512 microsecond
before going on to instruction
#17. If any data byte is received
before a timeout, the timer will be
restarted. The I0S will stay in this
instruction until a closing flag is
received or the timer expires or in
the case of an infinite input
message the GPC terminates the
chain.

Disable the timer.

BRANCH to the next
instruction to be executed in this
chain at location 0348. (This is
an example of how bypassing
might be done. The next
executable instruction will be at
location 0348).

MOVE the current value of

time to location 01FO0. (This could
be done to log the time that this
device was first enabled.)

Turn off the timer.

Enter the INPUT mode and

store the frame starting at location
1F00. In an IOS, the system will
hang at this instruction for a poll

to be won since there are no
unsolicited messages on the I/O
network.

0004 8CX20C 2000 In an IOS there would be
8CX20E . 0208 only these two instructions. This
BRANCH allows the IOS to
return to unsolicited mode without
the.need to restore pointers.

A possible way that a solicited chain could always end is the following. The last
instruction in the chain does a branch to a location that performs the desired chain
termination. The advantage of this is that the solicited chain pointer will always have a
known value in it whenever a chain has gone to completion.

nnnn XXXX 2000 This is the last instruction of the chain.
XXXX+2 OFFO0 It specifies BRANCH to OFFO.
8CXFFO 6084 This is an END CHAIN command.
8CXFF2. 0011 It turns off the POLL and places the I0S in

the execute unsolicited mode. The solicited
chain pointer will contain the value OFF4,
which can be used to verify that the chain has
completed.

C-26

APPENDIXD: NODE SPECIFICATION

The input output network is comprised of simplex nodes. Nodes are interconnected by
links. A node is a communication switching point with five input/output ports. Figure 1 is
a basic representation of a node. The internal construction of each port of a node is shown
in Figure 2. Since a node does not have knowledge of the configuration of the network it
must always have its receivers enabled. Reconfiguration commands can be accepted from
any port whether enabled or not. Configuration commands enable selected ports. Ports are
reconfigured whenever necessary and can be temporarily modified for single response
frames. As a message is received on an enabled port it regenerates and retransmits the
received data. At the same time, the message is decoded within the node. If the message is
addressed to the node it responds to the command embedded within the data. If the
message is addressed elsewhere it checks for a valid transmission, latches observed error
conditions and resets the receiver for the next transmission. ‘

Figure 1. AIPS NODE

Some components are unique to a port and some are shared by all the ports. Figure 2
shows the basic construction of a node. The components within the dotted lines are unique
to each port and are repeated five times. The components outside of the dotted lines form
the node control section and are not repeated. The following is a description of the basic
components of the node.

D-1

- W R W W W™ WM W RTEEWE® %W EWewwEwww®®®®®%W e W W wwWWww-®www"ww

Port enable

Figure 2. NODE PORT

D-2

To Other
\ :; Ports
UR > [>
/ > .
:
\
]
From -9 '
PROTOCOL other —) REGENERATION |0 port
DECODER LoGIC bl

ports —p enable :
]
i |
]
CLOCK '
EHTRACTION N
:
]
RECEIVE \
FIFG :
]
]
Porttogc (X

PROTOCOL

ENCODER

TRANSMIT

FIFO
PORT MESSAGE PORT } To port
SEQUENCER ACTIVITY BUFFER ENABLE regeneration
REGISTER REGISTER | logic

Po mponents (uniqu ach
1. Receiver

The receiver accepts the signal level on a link and converts it to the internal logic
level of the port. The receiver also isolates the node from electrical failures of the
link.

2. Protocol Decoder

The protocol decoder accepts the serial data stream from the receiver, checks for
protocol compliance and transmission induced errors. It then assembles the
message into parallel words utilizing its clock extraction section. These parallel
words are stored in a receive fifo for the control sequencer to examine.

3. Clock Extractor

Since the data transmission rate is 2 MHz, and all elements (GPC's, nodes,etc.) are
operating on independent oscillators, it is necessary to generate a clock for the
decoder. This clock is synchronized to the first edge of data that it sees and remains
usable for the maximum message length.

4. Signal Regeneration Logic

The signal regeneration logic is used to reconstruct the fidelity of the transmission.
The passage of the signal through circuit elements in the node and the variability of
the frequency of individual oscillators would degrade the signal if it were not
reconstructed in each node. After several transitions through circuit elements the
transmission could appear to be modified. The input to the regeneration logic is the
OR of all the enabled port receivers and the protocol encoder output. The output of
the regeneration logic is enabled or disabled by the port enable register and is
applied to the input of the port transmitter.

5. Transmitter

The transmitter converts the output of the regeneration logic into the signaling levels
used on the links.

ontrol Componen ha: 11 th rt

1. Node Sequencer and Control

D-3

The node sequencer and control orchestrates the total operation of the node. It
scans the port receive fifo's for messages received from the links. If a message is
found, it checks the address byte to determine if the message is addressed to this
node. If it is, it then checks the bytes that follow the address byte to see if the rest
of the message conforms to a proper node message format. The message is acted
upon only if it passes all tests. The sequencer is capable of reading the input fifo's,
writing to the transmiitter fifo, port enable register and message buffer.

. Port Enable Register

The port enable register accepts the decoded commands from the sequencer and is
used to enable and disable the individual port reconstruction logic. The last
command is stored until rewritten by the next command. The contents of this

register is contained within the status message from the node.

. Message Buffer

The message buffer is a 64 byte long RAM which can be written into by an
appropriate node command. The contents of this RAM can be returned by the Node
in place of a status message.

. Port Activity Register

The port activity register is set whenever a transition is detected on the port receiver.

. Transmit Fifo

The transmit fifo holds the node response message for application to the protocol
encoder.

. Protocol Encoder

“The protocol encoder receives the node responses and encodes them into the link

protocol. The output of the encoder is sent to the reconstruction logic of all the
ports.

D-4

Input Frame Message Format

The following is the format of an input frame sent to a node
1.

2.

10.

Opening Flag

Node Address

. Encoded Node Address

. Operation Code

. qut Enables and Control
. Message Sum Check

. Residue Bits

. FCS

. FCS -

Closing Flag

D-5

Bit assignments within the transaction are as follows.

bit

Opening Flag
Node Address
Encoded Address
Op Code
Port Enable

! ~ Sum Check
Residue Bits
FCS

FCS

Closing Flag

1. OPENING FLAG: As defined in the HDLC specification, used to synchronize and

7 6 5 4 3 2 1
0 1 1 1 1 1 1
Node Address Bits
Encoded Node Address Bits
Mode | Mode | Mode 1?4?;13 Err | Res | Res | Res
bog |ome |Sm | B [P C[B |4
Sum Check Bits
Residue Bits
FCS High Byte
FCS Low Byte
0 1 1 1 1 1 |1 0

separate transmissions. Recognized and extracted by the HDLC device.

2. NODE ADDRESS: The address of the Node to which this message is directed.

3. ENCODED NODE ADDRESS: The encoded address of the Node to which this

transaction is directed. It has been placed in the byte that HDLC has defined as control.

Since control code definition is defined by the user, in AIPS it will be used as the

; encoded address to help shorten the response time and is the 1's complement of the

node address.

D-6

4. OPERATION CODE: Contains the code for the function to be performed by the

addressed node. The following is the definition of those functions.

Bit 7 6 5 4 3
1 1 | R E Modify Port Enable Register as
specified in next byte.
1 1 0 R E Reserved
1 0 1 R E Next byte to count register
1 0o | o R E | Nextbyte to Address Reg H
0 1 1 R E Next byte to Address Reg L
' Next byte to address
0 1 0 R E specified by Address Register
0 0 1 R E Next byte to address
specified by Address Register
then +1 to Address Register
0 0 0 R E No modification to Port Enable
Register (next byte ignored).

All valid input frames result in a response frame from the Node. The content of the
response frame is determined by the state of bit 4 as defined below.

Bit4 R=1 Respond from Status Register
R=0 Respond from Message Buffer

The node can be commanded to send a response frame that contains a transmission
error for testing purposes. This faulted frame can occur in conjunction with any of the
above defined modes. A faulted frame is one in which the transmission is truncated,

i.e. aborted. The choice of valid or faulted frames is determined by the state of bit 3 as
defined below. |

Bit3 E=1 Respond with faulty Message
E=0 Respond with valid message

Modes 1, 2, 3, 4 and 5 are for specifying the parameters used to generate responses
from the message buffer. If a response is specified from the message buffer, the node
will respond with the number of bytes specified by the counter starting at the address
contained in the Address Register. The contents of the counter and Address Register

D-7

10.

are not changed by a response request. The counter and Address Register are modified
as specified above using modes 3, 4 and 5. Modes 1 and 2 are used to load specified
memory locations within the Node. Mode 1, when specified, automatically increments
the address register after each byte is stored at the present location specified by the
address register. The Address register can only specify locations from 00CO H to
OOFF H, a total of 64 bytes. Mode 2 is used to specify memory locations in a random
access mode. Bits 2, 1, and O specify, in binary, the number of residue bits to be
generated in a response frame.

PORT ENABLES AND CONTROL: If mode 7 is specified, in the opcode byte, this
byte is loaded into the port Enable register. If bit 7, of this byte, is set (=1) then the
port enable register is changed permanently. However, if bit 7 is not set and bit 6 is
set, the contents of the port enable register are modified for this transmission only. At
the completion of this transmission the previous contents are reloaded into the port
enable register. If both bits 7 and 6 are set at the same time, the node will respond as
if only bit 7 were set, i.e. the port enable register will be permanently modified. Bit 5,
if set, specifies that all status registers are to be cleared after this response is
completed.

MESSAGE SUM CHECK: The contents of this byte is calculated such that an add,
modulo 256,0f the Address byte, Encoded Address byte, OpCode byte, Port Enable
byte and this byte will yield a result of zero. It is computed at the source and verified
in the Node to check for errors outside the transmission medium.

RESIDUE BITS: Used to differentiate Node messages from all other transactions.
There are three residue bits in a node message and the content of these bits is not
specified.

FCS: This byte contains the high byte of the FCS as calculated in the transmitter.

FCS: This byte contains the low byte of the FCS as calculated in the transmitter.

CLOSING FLAG: This byte is defined by HDLC as the transmission terminator or
separator. Detected and extracted by the HDLC device.

Qutput Frame Message Format

The node always responds after a valid input frame. The output frame can be generated
from eithe - the status register or the message buffer.

Fr Regi
When an output frame is requested from the status register it will take the following form.
1. Opening Flag
2. Node Addr;:ss
3. Port Activity Seen
4. Transmission Errors Seen
5. Valid Frame Seen
6. Error in Node Messages Seen
7. Node Valid Frame Seen
8. Node Port Configuration
9. Sum Check
10. Residue Bits
11. FCS
12. FCS

13. Closing Flag

Bit assignments within the Output Frame from the status register are as follows.

received in a valid input frame.

D-10

bit 7 6 S 4 3 2 1 0
Opening Flag - 0 1 1 1 1 1 0
Node Address Node Address Bits
Activity Seen X X X E D C B A
Transmission Errs X X X E D C B A
Valid Frame Seen X X X E D C B A
Node Error Seen X X X E D C B A
Node Valid Frame X X X E D C B A
Node Port Config X X X E D C B A
Sum Check Sum Check Bits
Residue Residue Bits
FCS FCS High Byte
FCS FCS Low Byte
Closing Flag 0 1 1 1 1 1 1 0
' X=Reserved
1. OPENING FLAG: As defined in the HDLC specification, used to synchronize and
separate transmissions.
2. NODE ADDRESS: The address of this Node.
3. ACTIVITY SEEN: Whenever a transition on a link is detected at a port, whether
enabled or not, the corresponding bit in the byte is set to a 0. These bits remain set until
a clear status command is received in a valid input frame. ‘
4

. TRANSMISSION ERRORS: Whenever a Node detects a transmission error this bit is
set for the corresponding port. These bits remain set until a clear status command is

. VALID FRAME SEEN: Whenever a frame is seen without transmission errors the
corresponding port bit is set. These bits remain set until a clear status command is
received in a valid input frame.

. NODE ERRORS SEEN: Whenever a frame is received addressed to this node without
transmission errors but with format errors it will not be honored by this node, the bit
corresponding to the port upon which it was received will be set. These bits remain set
until a clear status command is received in a valid input frame.

. NODE VALID FRAME: Whenever a node responds to an input frame the
corresponding port bit in this byte is set. This bit is set before a response transmission
and cleared after the response transmission if a clear status command is received.

. NODE PORT CONFIGURATION: This byte is normally set to the present state of the
port enable register. However, if the input transmission had requested a change of port
configuration for this transmission only (ENB ONCE bit set), then the byte is set to the
state to which the node will revert after this transmission.

. MESSAGE SUM CHECK: The contents of this byte is calculated such that an add,
modulo 256,0f the Address byte, Activity Seen byte, Transmission Errors byte,Valid
Frame Seen byte, Node Errors Seen byte, Node Valid Frame byte, Node Port
Configuration byte and this byte will yield a result of zero. It is computed by the Node
to enable the receiving site to detect errors.

10. FCS: The FCS bytes are a cyclic redundancy calculation performed by the HDLC

. transmitter and appended to the end of the frame.

11. CLOSING FLAG: The closing flag is the frame terminator.

Output Frame From Message Buffer

An output frame from the message buffer is intended to be used as a test tool. The output
frame information field contains the number of bytes specified in the counter starting at the
address in the Address Register. The counter and Address Register must have been
initialized prior to a request. The values in these registers remain unchanged until they are
rewritten. A byte count of zero will result in 256 bytes being transmitted. The output
frame will take the following form.

1. Opening Flag
2. Contents of Address specified by the Address Register

3. Contents of Address specified by the Address Register + 1

D-11

10.

. Contents of Address Specified by the Address Register + Counter
. Residue bits
. FCS

. FCS

Closing Flag

D-12

Input/Output Network Management Software

WA\ Report Documentation Page
Space ASTWISIF3IoN

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
_NASA CR-181678

4. Title and Subtitle 5. Report Date
Advanced Information Processing System: May 1988

. Performing Organization Code

7. Author(s)

Gail Nagle,
Linda Alger, and
Alexander Kemp

. Performing Organization Report No.

CSDL-R-2039

9. Performing Organization Name and Address

The Charles Stark Draper Laboratory, Inc.
555 Technology Square
Cambridge, MA 02139.

10.

Work Unit No.

506-46-21-05

"

Contract or Grant No.
NAS1-17666

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

13.

Type of Report and Period Covered

Contractor Report

14.

Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor: Felix L. Pitts

NAS1-17666.

This report was prepared for NASA Langley Research Center under contract

16. Abstract

The Advanced Information Processing System (AIPS) uses a damage and fault

tolerant network to allow communication between its General Purpose Processors (GPCs)
and its IO devices. Although the network performs exactly like a bus, it is far more
reliable and damage tolerant than a linear bus. Because of the richness of interconnections
between the nodes which make up the bus, a faulty component can be identified and the
network reconfigured so as to isolate the failed part and restore full communication to all
non-failed components. : -

The I/O Network Manager is the software process responsible for establishing and
maintaining the communication path between processors and attached 1/O devices. The
methodology used in the design of the I/O Network Manager calls for a statement of the
functional requirements of this software process, followed by the software specifications of
the various parts of this module and their interaction with other AIPS software
components. All data items are fully specified and structured flow charts are generated for
all the logic required by the specifications. The final step is the implementation of the I/O
Network Manager logic as an Ada language program. This report covers all phases of the
design process with some additional information about the hardware used in the I/O
Networks of the AIPS Proof-of-Concept System.

17. Key Words (Suggested by Author(s})

Redundancy Management, Network Manager,

18. Distribution Statement

Unclassified-Unlimited

Fault and Damage Tolerant I/O Network,
Reconfigurable Bus, Reliable Communicationj,

Fault Isolation, Fault Analysis,
| _Autonomous I1/0Q

Subject Category 62

[19. Security Classif. {(of this report} 20. Security Classif. (of this page)

Unclass;fied Unclassified

21. No. of pages

22. Price

293 Al3

NASA FORM 1626 OCT 86

